Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neurourol Urodyn ; 40(6): 1433-1440, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34153139

RESUMO

AIMS: To collect feedback from subjects diagnosed with overactive bladder (OAB) on its impact on their quality of life, their satisfaction with current treatment options, and to assess nonsurgical, tibial nerve stimulation as a treatment option. METHODS: Subjects were asked a variety of questions about the impact of OAB on their lives, their satisfaction with current and previous treatment approaches. Subjects evaluated the comfort of a nonworking prototype garment and were given electrical stimulation over their posterior tibial nerve to assess comfort and tolerability. Electromyographic (EMG) signals were recorded. RESULTS: A total of 40 subjects with OAB symptoms were evaluated in the study. Urgency (55%), frequency (47.5%), nocturia (40%), and incontinence (30%) were the most bothersome symptoms. At the time of the study only 32.5% of the subjects were treating their OAB symptoms. Of those that had tried and discontinued treatments, most had failed medications (n = 14) due to no improvements or side effects. Only 2 subjects found stimulation to be uncomfortable before an EMG signal could be detected. The most common word used to describe the feeling of stimulation was "constant," followed by "tingling," "vibrating," and "comfortable." CONCLUSIONS: Most subjects who had tried OAB treatments were dissatisfied and discontinued their use. A new patient-friendly approach to OAB therapy that delivers efficacy but overcomes drawbacks associated with currently available treatments is needed. Subjects found electrical stimulation over the tibial nerve to be comfortable and tolerable and this should be considered as an alternative treatment approach for OAB.


Assuntos
Noctúria , Bexiga Urinária Hiperativa , Incontinência Urinária , Humanos , Qualidade de Vida , Nervo Tibial , Resultado do Tratamento , Bexiga Urinária Hiperativa/diagnóstico , Bexiga Urinária Hiperativa/terapia
2.
ACS Appl Bio Mater ; 3(11): 7974-7988, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-35019537

RESUMO

Surface-associated bacterial communities, known as biofilms, are responsible for a broad spectrum of infections in humans. Recent studies have indicated that surfaces containing nanoscale protrusions, like those in dragonfly wings, create a hostile niche for bacterial colonization and biofilm growth. This functionality has been mimicked on metals and semiconductors by creating nanopillars and other high aspect ratio nanostructures at the interface of these materials. However, bactericidal topographies have not been reported on clinically relevant hydrogels and highly compliant polymers, mostly because of the complexity of fabricating nanopatterns in hydrogels with precise control of the size that can also resist aqueous immersion. Here, we report the fabrication of bioinspired bactericidal nanostructures in bacterial cellulose (BC) hydrogels using low-energy ion beam irradiation. By challenging the currently accepted view, we show that the nanostructures grown in BC affect preferentially stiff membranes like those of the Gram-positive bacteria Bacillus subtilis in a time-dependent manner and, to a lesser extent, the more deformable and softer membrane of Escherichia coli. Moreover, the nanostructures in BC did not affect the viability of murine preosteoblasts. Using single-cell analysis, we demonstrate that indeed B. subtilis requires less force than E. coli to be penetrated by nanoprobes with dimensions comparable to those of the nanostructured BC, providing the first direct experimental evidence validating a mechanical model of membrane rupture via a tension-induced mechanism within the activation energy theory. Our findings bridge the gap between mechano-bactericidal surfaces and low-dimensional materials, including single-walled carbon nanotubes and graphene nanosheets, in which a higher bactericidal activity toward Gram-positive bacteria has been extensively reported. Our results also demonstrate the ability to confer bactericidal properties to a hydrogel by only altering its topography at the nanoscale and contribute to a better understanding of the bacterial mechanobiology, which is fundamental for the rational design bactericidal topographies.

3.
Environ Sci Nano ; 6(1): 180-194, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31297195

RESUMO

The production of graphene-family nanomaterials (GFNs) has increased appreciably in recent years. Graphene oxide (GO) has been found to be the most toxic nanomaterial among GFNs and, to our knowledge, no studies have been conducted to model its fate and transport in the environment. Lab studies show that GO undergoes phototransformation in surface waters under sunlight radiation resulting in formation of photoreduced GO (rGO). In this study, the recently updated Water Quality Analysis Simulation Program (WASP8) is used to simulate time-dependent environmental exposure concentrations of GO and its major phototransformation product, rGO, for Brier Creek, GA, USA at two flow scenarios under a constant loading of GO to the river for a period of 20 years. Analysis shows that the degree of phototransformation is closely associated with river flow condition: up to of 40% of GO undergoes phototransformation at low flow condition, whereas only 2.5% of GO phototransformation occurs at mean flow condition. River flow and heteroaggregation exhibit a 'competing' effect in determining the formation of rGO heteroagglomerates. Mass fraction analysis indicates that the vast majority of rGO heteroagglomerates settle to the sediment layers due to the settling of suspended solids. Simulation of natural recovery after removal of the GO source suggests that free GO and rGO are the immediate contaminants of concern in the studied surface water system, while rGO heteroaggregated with suspended solids can have a long-term ecological impact on both the water column and sediments.

4.
NanoImpact ; 13: 1-12, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31297468

RESUMO

The industrial use and widespread application of carbon-based nanomaterials have caused a rapid increase in their production over the last decades. However, toxicity of these materials is not fully known and is still being investigated for potential human and ecological health risks. Detecting carbon-based nanomaterials in the environment using current analytical methods is problematic, making environmental fate and transport modeling a practical way to estimate environmental concentrations and assess potential ecological risks. The Water Quality Analysis Simulation Program 8 (WASP8) is a dynamic, spatially resolved fate and transport model for simulating exposure concentrations in surface waters and sediments. Recently, WASP has been updated to incorporate processes for simulating the fate and transport of nanomaterials including heteroaggregation and phototransformation. This study examines the fate and transport of multiwalled carbon nanotubes (MWCNT), graphene oxide (GO) and reduced graphene oxide (rGO) in four aquatic ecosystems in the southeastern United States. Sites include a seepage lake, a coastal plains river, a piedmont river and an unstratified, wetland lake. A hypothetical 50-year release is simulated for each site-nanomaterial pair to analyze nanomaterial distribution between the water column and sediments. For all nanomaterials, 99% of the mass loaded moves though systems of high and low residence times without being heteroaggregated and deposited in the sediments. However, significant accumulation in the sediments does occur over longer periods of time. Results show that GO and rGO had the highest mass fraction in the water column of all four sites. MWCNT were found predominantly in the sediments of the piedmont river and seepage lake but were almost entirely contained in the water column of the coastal plains river and wetland lake. Simulated recovery periods following the release estimate 37+ years for lakes and 1-4 years for rivers to reduce sediment nanomaterial concentrations by 50% suggesting that carbon-based nanomaterials have the potential for long-term ecological effects.

5.
Nanoscale ; 7(22): 10021-9, 2015 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-25899217

RESUMO

Nanoscale carbon lubricants such as graphene, have garnered increased interest as protective surface coatings for devices, but its tribological properties have been shown to depend on its interactions with the underlying substrate surface and its degree of surface conformity. This conformity is especially of interest as real interfaces exhibit roughness on the order of ∼10 nm that can dramatically impact the contact area between the graphene film and the substrate. To examine the combined effects of surface interaction strength and roughness on the frictional properties of graphene, a combination of Atomic Force Microscopy (AFM) and Raman microspectroscopy has been used to explore substrate interactions and the frictional properties of single and few-layer graphene as a coating on silica nanoparticle films, which yield surfaces that mimic the nanoscaled asperities found in realistic devices. The interactions between the graphene and the substrate have been controlled by comparing their binding to hydrophilic (silanol terminated) and hydrophobic (octadecyltrichlorosilane modified) silica surfaces. AFM measurements revealed that graphene only partially conforms to the rough surfaces, with decreasing conformity, as the number of layers increase. Under higher mechanical loading the graphene conformity could be reversibly increased, allowing for a local estimation of the out-of-plane bending modulus of the film. The frictional properties were also found to depend on the number of layers, with the largest friction observed on single layers, ultimately decreasing to that of bulk graphite. This trend however, was found to disappear, depending on the tip-sample contact area and interfacial shear strain of the graphene associated with its adhesion to the substrate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA