RESUMO
Two experiments were conducted to determine: 1) the impact of strained rumen fluid (SRF) alone or SRF with particle-associated microorganisms (PAO) included and dilution on in vitro dry matter digestibility (DMD) and 2) the impact of trace mineral (TM) source on in vitro fermentation characteristics and TM solubility under simulated abomasal and intestinal conditions. In Experiment 1, three cannulated steers were adapted to a diet formulated to meet the nutrient requirements for lactating dairy cows. Strained RF was obtained by straining rumen content through 2 layers of cheesecloth. Half of the remaining digesta was washed with McDougall's buffer and filtered through 2 layers of cheesecloth to obtain PAO. Both SRF and PAO were filtered again through 8 layers of cheesecloth. Strained RF was mixed with either McDougall's buffer (SRF) or PAO (SRF+PAO) at a ratio of 1:2 or 1:4 and incubated at 39°C for 12 h using the ground basal diet as the substrate. Digestibility of DM was greater in digestion tubes containing SRF and SRF+PAO at a 1:2 ratio. In Experiment 2, eight steers fitted with ruminal cannula were blocked by body weight and assigned to one of two treatment groups. Treatments consisted of 10 mg Cu, 40 mg Mn, and 60 mg Zn/kg DM from either: 1) sulfate (STM) or 2) hydroxychloride (HTM) sources. Steers were housed in individual pens and fed the same diet as described in experiment 1. Dietary TM treatments were mixed with dried distillers grains and mixed in the diet, by hand, immediately after basal diet delivery. Dietary treatments were fed for 14 d. On day 15, SRF+PAO was collected from each steer (STM-RF and HTM-RF) and used in a series of in vitro crossover experiments. In vitro substrates (S) used were the ground diets consumed by the animals on each treatment (STM-S and HTM-S). Incubations containing HTM-S had greater (P < 0.01) total VFA concentration and propionic acid molar proportions, but lesser (P < 0.01) acetic acid molar proportions than STM-S. Rumen fluid from steers supplemented with HTM had a greater (P < 0.03) total VFA than STM-RF at 24h post incubation. After 12 h post incubation, the molar proportion of propionic acid in HTM-RF was lesser (P = 0.04) than STM-RF. After simulated abomasal digestion, soluble Mn concentration in HTM-S was greater (P < 0.01) than STM-S. These data indicate that the source of trace minerals can influence in vitro rumen fermentation characteristics and Mn solubility under simulated abomasal conditions.
RESUMO
Two experiments were conducted to examine the impact of trace mineral (TM) source on in vitro and in vivo solubility characteristics. Experiment 1: Hydroxy TM (HTM) and sulfate TM (STM) sources of Cu, Mn, and Zn were incubated separately in water for 24 h. Immediately after mixing, initial pH of each solution was greater (P < 0.03) for HTM compared to STM for all elements. Final pH tended to be greater for Cu (P = 0.09) and Zn (P = 0.07) from HTM compared to STM. Water solubility of Cu, Mn, and Zn from STM was greater (P < 0.01) than HTM sources. Experiment 2: Eight steers fitted with rumen cannula were blocked by body weight and randomly assigned to treatments. Treatments consisted of 10 mg Cu, 40 mg Mn, and 60 mg Zn/kg DM from either STM or HTM sources. Steers were individually fed a cracked corn-corn silage-based diet. Treatments were top-dressed daily. Rumen contents were collected at 0, 2, and 4 h post-feeding on d 1 and 14. On d 15, strained ruminal fluid and particle-associated microorganisms were obtained. Zinc was more tightly bound (P = 0.01) to the digesta in HTM-supplemented steers compared to STM on d 14. These data indicate that TM source influences pH and solubility of Cu, Mn, and Zn in water and may affect rumen soluble Cu concentrations and binding strength of Zn to solid digesta.
RESUMO
Angus-crossbred steers (nâ =â 400; 369.7â ±â 7.6 kg) were used to determine the influence of trace mineral (TM) source and chromium propionate (Cr Prop) supplementation on performance, carcass characteristics, and ruminal and plasma variables in finishing steers. Steers were blocked by body weight (BW) and randomly assigned within block to treatments in a 2â ×â 2 factorial arrangement, with factors being: 1) TM source (STM or HTM) and 2) Cr supplementation (0 or 0.25 mg Cr/kg DM, -Cr orâ +â Cr, respectively). Treatments consisted of the addition of: 1) sulfate TM (STM; 90, 40, and 18 mg/kg DM of Zn, Mn, and Cu, respectively), 2) STM and 0.25 mg Cr/kg DM from Cr Prop, 3) hydroxychloride TM (HTM; 90, 40, and 18 mg/kg DM of Zn, Mn, and Cu, respectively), and 4) HTM and 0.25 mg Cr/kg DM from Cr Prop. Each treatment consisted of 10 replicate pens with 10 steers per pen. Body weights were obtained on consecutive days at the initiation and termination of the 154-d study. Steers were fed a steam-flaked corn-based finishing diet. Ractopamine hydrochloride was fed for the last 31 d of the study. Ruminal fluid and blood samples were obtained from one steer per pen on days 28 and 84 for ruminal volatile fatty acids (VFA) and plasma TM and glucose analysis. Steers were slaughtered at the end of the study and individual carcass data were collected. No Crâ ×â TM source interactions (P = 0.48) were detected. Steers supplemented with HTM had greater (P = 0.04) hot carcass weight (HCW), dressing percentage (DP), longissimus muscle (LM) area, and USDA yield grade (YG), and tended (P = 0.12) to have greater average daily gain (ADG) than those receiving STM. Average daily gain, gain:feed, dressing percentage, and longissimus muscle area were greater (P = 0.04) forâ +â Cr steers compared to-Cr steers. Hot carcass weight tended (P = 0.06) to be greater forâ +â Cr steers. Ruminal acetate concentrations at 28 d were lesser (P = 0.01) for HTM vs. STM steers, and greater (P = 0.04) forâ +â Cr steers compared to-Cr steers. Plasma concentrations of Zn, Cu, and Mn were not affected by TM source or Cr supplementation. Steers supplemented with Cr had greater (P = 0.05) plasma glucose concentrations than-Cr steers at 28 but not at 84 d. Results of this study indicate replacing STM with HTM improved carcass characteristics in finishing steers, and Cr Prop supplementation improved steer performance and carcass characteristics.
Trace minerals (TM) are supplemented to finishing cattle diets to prevent TM deficiencies. Sources of TM differ in their bioavailability and effect on rumen fermentation. Chromium is a TM required in low concentrations to enhance insulin activity. We tested the effect of TM source (hydroxychloride; HTM vs. sulfate; STM) and supplemental Cr propionate (Cr Prop) on performance and carcass characteristics of finishing steers. Providing 0.25 mg of supplemental Cr/kg DM, from Cr Prop, improved gain, feed efficiency, and carcass characteristics in steers. Steers supplemented with HTM tended to gain faster and had improved carcass characteristics of economic importance compared to those supplemented with STM.
Assuntos
Ração Animal , Dieta , Suplementos Nutricionais , Propionatos , Oligoelementos , Animais , Bovinos/fisiologia , Bovinos/crescimento & desenvolvimento , Masculino , Suplementos Nutricionais/análise , Ração Animal/análise , Dieta/veterinária , Oligoelementos/farmacologia , Oligoelementos/administração & dosagem , Propionatos/farmacologia , Propionatos/administração & dosagem , Rúmen/efeitos dos fármacos , Rúmen/metabolismo , Composição Corporal/efeitos dos fármacos , Cromo/farmacologia , Cromo/administração & dosagem , Fenômenos Fisiológicos da Nutrição Animal , Distribuição Aleatória , Carne/análiseRESUMO
Several trace mineral sources, including inorganic, numerous organic, and hydroxychloride sources, are available for dietary supplementation or inclusion in a free-choice supplement. Inorganic forms of copper and manganese differ in their bioavailability. Although research results have been variable, organic and hydroxychloride trace minerals are generally considered more bioavailable than inorganic sources. Research indicates that fiber digestibility is lower in ruminants fed sulfate trace minerals compared with hydroxychloride and some organic sources. Compared with free-choice supplements, individual dosing with rumen boluses or injectable forms ensures that each animal receives the same quantity of a trace mineral.
RESUMO
Twelve Angus steers (BW 452.8 ± 6.1 kg) fitted with ruminal cannulae were used to determine the impact of trace mineral (TM) source on digestibility, ruminal volatile fatty acid (VFA) composition, ruminal soluble concentrations of Cu, Zn, and Mn, and relative binding strength of trace minerals located in the rumen insoluble digesta fraction. Steers were fed a medium-quality grass hay diet (DM basis: 10.8% CP, 63.1% neutral detergent fiber [NDF], 6.9 mg Cu/kg, 65.5 mg Mn/kg, and 39.4 mg Zn/kg) supplemented with protein for 21 d. Treatments consisted of either sulfate (STM) or hydroxy (HTM) sources (n = 6 steers/treatment) to provide 20, 40, and 60 mg supplemental Cu, Mn, and Zn/kg DM, respectively. Following a 21-d adaptation period, total fecal output was collected for 5 d. Dry matter (P < 0.07) and CP (P < 0.06) digestibility tended to be reduced, and NDF (P < 0.04) and acid detergent fiber (ADF) (P < 0.05) digestibility were reduced in STM- vs. HTM-supplemented steers. On day 6, ruminal fluid was collected at 0, 2, and 4 h post-feeding and analyzed for VFA. There were no treatment x time interactions for VFA. Steers receiving HTM had less (P < 0.02) molar proportions of butyric acid and greater (P < 0.05) total VFA concentrations than STM-supplemented steers. Steers were then fed the same diet without supplemental Cu, Zn, or Mn for 14 d. On day 15 steers received a pulse dose of 20 mg Cu, 40 mg Mn, and 60 mg Zn/kg DM from either STM or HTM (n = 6 steers/treatment). Ruminal samples were obtained at 2-h intervals starting at -4 and ending at 24 h relative to dosing. There was a treatment x time interaction (P < 0.03) for ruminal soluble Cu, Mn, and Zn concentrations. Ruminal soluble mineral concentrations were greater (P < 0.05) for Cu at 4, 6, 8, 10, 12, and 14 h; for Mn at 4 and 6 h; and for Zn at 4, 6, and 8 h post-dosing in STM compared with HTM-supplemented steers. Copper concentrations were greater (P < 0.05) at 12 and 24 h and Zn concentrations in ruminal solid digesta were greater at 24 h in HTM-supplemented steers. Upon dialysis against Tris-EDTA, the percent Zn released from digesta was greater (P < 0.05) at 12 h (P < 0.03) and 24 h (P < 0.05), and the percent Cu released was greater (P < 0.02) at 24 h post-dosing in HTM steers when compared with STM-supplemented steers. Results indicate that Cu and Zn from HTM have low solubility in the rumen and appear to be less tightly bound to ruminal solid digesta than Cu and Zn from STM. The lower ruminal soluble concentrations of Cu and Zn in steers given HTM were associated with greater fiber digestibility.
Assuntos
Oligoelementos , Animais , Dieta/veterinária , Fibras na Dieta , Digestão , RúmenRESUMO
Forty-eight Quarter Horse geldings (3 to 8 yr of age) were used to determine the effects of dietary chromium (Cr), in the form of Cr propionate (Cr Prop) on insulin sensitivity. Horses were blocked by age, body condition score, and glucose response to concentrate feeding on day 0 and randomly assigned to treatments. Treatments consisted of 0, 2, 4, or 8 mg Cr/d from Cr Prop. Horses were fed daily a concentrate mix at a rate of 0.2 kg/100 kg body weight (BW) and grass hay at 1.75 to 2.0 kg/100 kg BW. All horses were fed the control diet for 7 d prior to the initiation of the study. After an overnight fast, blood samples from the jugular vein were obtained at 0, 2, and 4 h after concentrate feeding on days 0 and 28 for the determination of glucose, nonesterified fatty acids, and insulin. A glucose tolerance test (GTT) was conducted on day 42. Glucose was infused via jugular vein catheters, and blood samples were collected at various times relative to dosing for glucose and insulin determination. Plasma glucose on day 28 was affected (P < 0.05) by treatment, time, and treatment × time. Horses fed 4 mg Cr/d had lesser (P < 0.05) plasma glucose concentrations than those in the other treatments at 0 h. At 2 h post-feeding glucose concentrations were greater (P < 0.05) in horses fed 0 or 8 mg Cr/d than in those given 4 mg Cr. Horses fed 2 mg Cr/d had lesser (P < 0.05) plasma glucose at 4 h post feeding compared with those fed 0 or 8 mg Cr. Plasma glucose did not differ among horses receiving 2 or 4 mg Cr/d at 2 or 4 h. Serum insulin was affected (P < 0.05) by treatment, time, and treatment × time. Insulin concentrations were greater (P < 0.05) in horses fed 0 or 2 mg Cr/d than in those given 4 or 8 mg Cr at 0 h. At 4 h post-feeding insulin concentrations were greater (P < 0.05) in horses given 0 or 8 mg Cr than in those fed 2 or 4 mg Cr/d. Plasma glucose was affected (P < 0.05) by treatment and time, but not by treatment × time following the GTT. Mean plasma glucose (across sampling times) concentrations were greater (P < 0.05) in controls than in horses fed 2 or 4 mg Cr/d. Glucose concentrations following the GTT did not differ among controls and horses given 8 mg Cr/d. Following glucose infusion, serum insulin concentrations were greater (P < 0.05) in horses fed 2 or 4 mg Cr and tended to be greater in those fed 8 mg Cr/d compared with controls. The results of this study indicate that 2 or 4 mg Cr/d from Cr Prop increased insulin sensitivity in adult horses following oral carbohydrate consumption.
Assuntos
Carboidratos/administração & dosagem , Cavalos/fisiologia , Resistência à Insulina , Propionatos/farmacologia , Administração Intravenosa/veterinária , Administração Oral , Animais , Glicemia/efeitos dos fármacos , Peso Corporal , Suplementos Nutricionais , Ácidos Graxos não Esterificados/sangue , Glucose/metabolismo , Teste de Tolerância a Glucose/veterinária , Insulina/sangue , Masculino , Propionatos/administração & dosagemRESUMO
Eight crossbred steers (BW 719.0 ± 65.0 kg) with ruminal and duodenal cannulae were used to examine the effect of trace mineral (TM) source on digestibility; ruminal and duodenal solubility of Cu, Zn, and Mn; and in vitro release of Cu, Zn, and Mn from the solid fraction of ruminal digesta. Experiment 1 determined the effect of TM source on DM and NDF digestibility in steers fed a corn silage and steam-flaked corn-based diet. Treatments consisted of 10 mg Cu, 20 mg Mn, and 30 mg Zn/kg DM from either sulfate TM (STM) or hydroxy TM (HTM) sources. Following a 14-d adaptation period, total fecal output was collected for 5 d. Dry matter digestibility was not affected by treatment, but NDF digestibility tended (P < 0.09) to be greater in HTM vs. STM supplemented steers. In Exp. 2, steers were fed a diet without supplemental Cu, Zn, or Mn for 19 d. Steers were then administrated a pulse dose of STM or HTM (2× the National Research Council requirements for Cu, Mn, and Zn) via the rumen fistula. Ruminal and duodenal samples were obtained at 2-h intervals starting at -4 and ending at 24 h relative to dosing. Ruminal soluble Cu and Zn concentrations were affected by treatment, time, and treatment × time. Soluble concentrations and percent soluble Cu and Zn in ruminal digesta increased (P < 0.05) above 0-h values for 10 h following dosing with STM, but not HTM. Concentrations of Cu and Zn in ruminal solid digesta were also affected by treatment, time, and treatment × time. Steers dosed with STM had greater (P < 0.05) solid digesta Cu concentrations at 2 and 4 h but lesser (P < 0.05) concentrations from 6 to 20 h post-dosing than those receiving HTM. Ruminal solid digesta Zn concentrations were greater (P < 0.05) in HTM vs. STM-dosed steers from 6 through 24 h post-dosing. Distribution of Mn in ruminal digesta was affected by TM source, but to a lesser extent than Zn and Cu. Duodenal soluble TM concentrations were variable and not affected by treatment. Binding strength of TM to ruminal solid digesta was estimated at 0, 6, and 12 h post-dosing using dialysis against chelating agents. The percentage of Cu and Zn released from ruminal solid digesta by dialysis against Tris-EDTA was greater (P < 0.05) at 12 h post-dosing from steers receiving HTM vs. STM. Results indicate that Cu and Zn from HTM have low solubility in the rumen and appear to be less tightly bound to ruminal solid digesta than Cu and Zn from STM.
Assuntos
Bovinos/fisiologia , Cobre/metabolismo , Suplementos Nutricionais , Oligoelementos/metabolismo , Zinco/metabolismo , Animais , Dieta/veterinária , Masculino , Rúmen/metabolismo , Silagem/análise , Solubilidade , Zea maysRESUMO
Four hundred crossbred steers were used in a randomized complete block design to investigate the effects of supplemental Zn source and concentration, and dietary Cr on performance and carcass characteristics of feedlot steers fed a steam-flaked corn-based finishing diet. Steers were blocked by initial BW within cattle source (3 sources) and randomly assigned within block to 1 of 5 treatments. Before the initiation of the experiment, trace mineral supplement sources were analyzed for Zn and Cr. Zinc and Cr concentrations of the Zn sources were used to balance all dietary treatments to obtain correct Zn and Cr experimental doses. Treatments were the addition of: 1) 90 mg Zn/kg DM from ZnSO4 and 0.25 mg Cr/kg DM from Cr propionate (90ZS+Cr); 2) 30 mg Zn/kg DM from Zn hydroxychloride and 0.25 mg Cr/kg DM from Cr propionate (30ZH+Cr); 3) 90 mg Zn/kg DM from Zn hydroxychloride and 0.25 mg Cr/kg DM from Cr propionate (90ZH+Cr); 4) 60 mg Zn/kg DM from ZnSO4 and 30 mg Zn/kg DM from Zn methionine (90ZSM); and 5) 90 mg Zn/kg DM from Zn hydroxychloride (90ZH). Steers were individually weighed on d-2 and on 2 consecutive days at the end of the experiment. Initial liver biopsies were obtained from all steers at processing. Equal numbers of pen replicates per treatment were slaughtered at a commercial abattoir on day 162, 176, and 211; individual carcass data and final liver samples were collected. Total finishing dietary Zn and Cr concentrations were 118.4, 58.2, 114.2, 123.0, and 108.2 mg Zn/kg DM and 0.740, 0.668, 0.763, 0.767, and 0.461 mg Cr/kg DM, for treatments 1 to 5, respectively. Data were analyzed statistically using preplanned single degree of freedom contrasts. Steers receiving 90ZH+Cr had greater final BW (P < 0.04) and ADG (P < 0.03) when compared with steers receiving 90ZH. Additionally, hot carcass weight was 8.5 kg greater (P < 0.03) for 90ZH+Cr compared with 90ZH supplemented steers. Steers receiving 90ZH+Cr had greater longissimus muscle area when compared with steers receiving 90ZSM. Dry matter intake, G:F, morbidity and mortality, and all other carcass measurements were similar across treatments. These data indicate that under the conditions of this experiment, Zn source and concentration had no impact on live performance, liver Zn and Cu concentrations, and carcass characteristics. Supplemental Cr in diets containing 90 mg of supplemental Zn/kg DM from ZH improved final BW, ADG, and hot carcass weights.
Assuntos
Ração Animal/análise , Bovinos/fisiologia , Cromo/farmacologia , Suplementos Nutricionais , Zinco/farmacologia , Matadouros , Animais , Composição Corporal , Dieta/veterinária , Fígado/metabolismo , Masculino , Distribuição Aleatória , Zea maysRESUMO
This paper provides an overview of research that has been conducted with manganese (Mn), chromium (Cr), nickel (Ni), and boron (B) in poultry, swine, and ruminants. Manganese is an essential trace mineral that functions as an enzyme component and enzyme activator. A deficiency of Mn results in a variety of bone abnormalities, and Mn deficiency signs have been observed under practical conditions in poultry and cattle. Chromium can potentiate the action of insulin, but whether Cr is an essential trace mineral is controversial. Insulin sensitivity has been enhanced by Cr in cattle, swine, and broilers. Responses to Cr supplementation have been variable. Production responses to Cr supplementation have been most consistent in animals exposed to various stressors (heat, cold, weaning, etc). The legality of supplementing Cr to animal diets varies among countries, Cr sources, and animal species. A specific biochemical function for Ni and B has not been identified in mammals. Signs of Ni deficiency have been produced experimentally in a number of animal species. Nickel may affect rumen microbial fermentation in ruminants, as Ni is a component of bacterial urease and cofactor F430 in methanogenic bacteria. There is little evidence that dietary Ni limits animal production under practical conditions. Beneficial effects of B supplementation on growth and bone strength have been seen in poultry and swine, but results have been variable.
Assuntos
Agricultura , Animais Domésticos , Suplementos Nutricionais , Oligoelementos/farmacologia , Animais , Desenvolvimento Ósseo/efeitos dos fármacos , Boro/farmacologia , Cromo/farmacologia , Manganês/farmacologia , Níquel/farmacologiaRESUMO
This study was conducted to investigate the effects of chromium from chromium propionate (CrPro) on serum lipids, carcass traits, and breast meat quality in heat-stressed birds. A total of 210 1-day-old male broilers were randomly allotted by initial body weight (BW) into 5 treatments with 7 replicates with 6 birds per replicate pen for 42 days. The treatments included a basal corn-soybean meal diet and basal diet supplemented with 0.2, 0.4, 0.8, or 1.6 mg Cr/kg diet. Birds had ad libitum access to feed and distilled-deionized water at normal conditions for 1-3 weeks with little or no stress, and then birds were housed under heat stress conditions with 35 ± 2 °C ambient temperature for 4-6 weeks. Results showed that serum triglyceride (TG) (P = 0.0006) and low-density lipoprotein cholesterol (LDLC) (P = 0.0038) concentrations were decreased linearly as Cr dose increased. Compared with other groups, birds receiving 0.8 or 1.6 mg Cr/kg had lower TG (P = 0.0015). Compared to control birds, birds fed diets with 0.2, 0.4, 0.8, or 1.6 mg Cr/kg supplementation had lower LDLC (P = 0.0006). However, the total cholesterol (TC) and high density lipoprotein cholesterol (HDLC) concentrations in serum were not affected by treatment (P > 0.05). No difference was observed in BW, the relative weights of breast muscle, thigh muscle and abdominal fat (P > 0.05), and breast meat quality (Ph15min, Ph24h, L*, a*, b*, cooking loss, shear force) among the treatments (P > 0.05). Results from this study indicated that CrPro supplementation could be beneficial to serum lipids metabolism of heat-stressed broiler chickens by decreasing TG and LDLC contents, but had no impacts on meat quality and carcass traits of the heat-stressed broilers.
Assuntos
LDL-Colesterol/sangue , Suplementos Nutricionais , Transtornos de Estresse por Calor/metabolismo , Carne/normas , Propionatos/administração & dosagem , Propionatos/farmacologia , Triglicerídeos/sangue , Animais , Galinhas , Transtornos de Estresse por Calor/sangue , Temperatura Alta , Masculino , Carne/análise , Propionatos/metabolismoRESUMO
BACKGROUND: Understanding the influence of dietary iron deficiency and dietary iron oversupplementation on intestinal health is important for both animal production and human health. OBJECTIVE: The aim of this study was to determine whether dietary iron concentration influences intestinal physiology, morphology, and inflammation in the porcine duodenum. METHODS: Twenty-four male pigs (21 d old) were fed diets containing either 20 mg Fe/kg [low dietary iron (L-Fe)], 120 mg Fe/kg [adequate dietary iron (A-Fe); control], or 520 mg Fe/kg [high dietary iron (H-Fe)] by FeSO4 supplement (dry matter basis). After 32-36 d, the duodenum was harvested from pigs and mounted in Ussing chambers for the measurement of transepithelial electrical resistance (TER), short-circuit current, and (3)H-mannitol permeability. Intestinal morphology and inflammation were assessed by histologic examination, and proinflammatory gene expression was assessed by real-time polymerase chain reaction. RESULTS: Compared with A-Fe-fed pigs, pigs fed L-Fe diets exhibited reduced TER (by 30%; P < 0.05). Compared with that of A-Fe-fed controls, the paracellular flux of (3)H-mannitol across the duodenal mucosa was higher (P < 0.05) in L-Fe-fed (>100%) and H-Fe-fed (â¼4-fold) pigs; the L-Fe-fed and H-Fe-fed groups did not differ significantly from one another. Compared with the L-Fe-fed pigs, the A-Fe-fed and H-Fe-fed pigs had malondialdehyde concentrations 1.4- and 2.5-fold higher in the duodenum and 4.4- and 6.6-fold higher in the liver, respectively (P < 0.05). Neutrophil counts were higher in both the L-Fe-fed (by 3-fold) and H-Fe-fed (by 3.3-fold) groups than in the A-Fe-fed group; the L-Fe-fed and H-Fe-fed groups did not significantly differ from one another. Duodenal mucosal tumor necrosis factor α (TNFA), interleukin (IL) 1ß, and IL6 relative gene expression was upregulated by 36%, 28%, and 45%, respectively, in H-Fe pigs (P < 0.05), but not in L-Fe pigs, compared with A-Fe pigs. CONCLUSION: These data suggest that adequate but not oversupplementation of dietary iron in pigs is required to maintain intestinal barrier health and function.
Assuntos
Dieta , Suplementos Nutricionais , Inflamação/etiologia , Mucosa Intestinal/fisiopatologia , Íons/metabolismo , Ferro da Dieta/administração & dosagem , Ferro/administração & dosagem , Animais , Transporte Biológico , Duodeno , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Interleucina-5/metabolismo , Ferro/metabolismo , Deficiências de Ferro , Ferro da Dieta/metabolismo , Fígado , Masculino , Malondialdeído/metabolismo , Neutrófilos/metabolismo , Estado Nutricional , Hipernutrição , Permeabilidade , Suínos , Fator de Necrose Tumoral alfa/metabolismoRESUMO
OBJECTIVE: To evaluate effects of quaternary benzo(c)phenanthridine alkaloids (QBAs) against Salmonella spp and determine effects on growth performance, organism shedding, and gastrointestinal tract integrity in pigs inoculated with Salmonella enterica serovar Typhimurium. SAMPLE: 36 Salmonella isolates and twenty 5-week-old pigs. PROCEDURES: Minimum inhibitory concentration of QBAs against the Salmonella isolates was determined. Pigs were allocated to 4 groups and inoculated with Salmonella organisms. Pigs received diets supplemented with 1.5 g of QBAs/1,000 kg of feed, 0.75 g of QBAs/1,000 kg of feed, or 59.4 g of chlortetracycline/1,000 kg of feed or a nonsupplemented (control) diet. Pigs were weighed on day 0 and then weekly for 40 days. Fecal samples were collected to quantify Salmonella organisms. Gastrointestinal tract integrity was evaluated by measuring transepithelial resistance. RESULTS: In vitro, 9 of 36 (25%) Salmonella isolates were inhibited at 90 µg of QBAs/mL; all 36 were inhibited at 179 µg of QBAs/mL. Diets containing QBAs significantly decreased Salmonella spp shedding; shedding was lower 40 days after inoculation for pigs fed diets containing QBAs or chlortetracycline than for pigs fed the control diet. Growth performance was similar for pigs fed diets containing QBA or chlortetracycline. Gastrointestinal tract integrity was improved in pigs fed the diet containing 1.5 g of QBAs/1,000 kg of feed. CONCLUSIONS AND CLINICAL RELEVANCE: QBAs and chlortetracycline decreased Salmonella spp shedding but did not differ with regard to growth performance. Gastrointestinal tract integrity was better, albeit not significantly, in pigs fed diets containing QBAs. Further investigation into the role of QBAs and their mechanism as an immunomodulator is necessary.
Assuntos
Benzofenantridinas/farmacologia , Resistência a Múltiplos Medicamentos , Trato Gastrointestinal/efeitos dos fármacos , Crescimento e Desenvolvimento/efeitos dos fármacos , Salmonelose Animal/tratamento farmacológico , Doenças dos Suínos/tratamento farmacológico , Doenças dos Suínos/microbiologia , Animais , Derrame de Bactérias/efeitos dos fármacos , Clortetraciclina/farmacologia , Fezes/microbiologia , Testes de Sensibilidade Microbiana , SuínosRESUMO
Copper is an essential trace element that functions in a diverse array of biochemical processes that include mitochondrial respiration, neurotransmitter biogenesis, connective tissue maturation, and reactive oxygen chemistry. The Ctr1 protein is a high-affinity Cu(+) importer that is structurally and functionally conserved in yeast, plants, fruit flies, and humans and that, in all of these organisms, is localized to the plasma membrane and intracellular vesicles. Although intestinal epithelial cell-specific deletion of Ctr1 in mice demonstrated a critical role for Ctr1 in dietary copper absorption, some controversy exists over the localization of Ctr1 in intestinal epithelial cells in vivo. In this work, we assess the localization of Ctr1 in intestinal epithelial cells through two independent mechanisms. Using immunohistochemistry, we demonstrate that Ctr1 localizes to the apical membrane in intestinal epithelial cells of the mouse, rat, and pig. Moreover, biotinylation of intestinal luminal proteins from mice fed a control or a copper-deficient diet showed elevated levels of both total and apical membrane Ctr1 protein in response to transient dietary copper limitation. Experiments in cultured HEK293T cells demonstrated that alterations in the levels of the glycosylated form of Ctr1 in response to copper availability were a time-dependent, copper-specific posttranslational response. Taken together, these results demonstrate apical localization of Ctr1 in intestinal epithelia across three mammalian species and suggest that increased Ctr1 apical localization in response to dietary copper limitation may represent an adaptive response to homeostatically modulate Ctr1 availability at the site of intestinal copper absorption.
Assuntos
Proteínas de Transporte de Cátions/metabolismo , Cobre/metabolismo , Células Epiteliais/metabolismo , Mucosa Intestinal/citologia , Estabilidade Proteica , Sequência de Aminoácidos , Animais , Proteínas de Transporte de Cátions/genética , Polaridade Celular , Transportador de Cobre 1 , Dieta , Células Epiteliais/citologia , Humanos , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Ratos , SuínosRESUMO
To investigate the effects of dietary iron (Fe) and age on Fe metabolism, we used 36 weaned barrows in a 2 x 3 design with 2 concentrations of dietary Fe [97 (control) and 797 (high Fe) mg Fe/kg dry matter] and 3 time points of tissue collection (after 21, 42, or 63 d on diets). Pigs were weighed and bled on d 0, 20, 41, and 62. High Fe reduced feed efficiency but did not affect pig weight gain. Blood hemoglobin concentrations and Fe concentrations of liver, intestine, and heart were increased by high dietary Fe on all days. Concentrations of liver and heart Fe increased with age. As determined by quantitative real-time PCR, hepatic expression of hepcidin (HAMP) in pigs given the high-Fe diet was 6.25-fold that of control pigs. In the intestine, relative mRNA levels of ferroportin, divalent metal transporter 1, and transferrin receptor were downregulated by high Fe. Expression of an alternative route of Fe absorption, solute carrier family 39 member 14 (SLC39A14), was downregulated in the intestine of pigs fed high dietary Fe. Additionally, duodenal mRNA level of certain genes including scavenger receptor class A, member 5, and frataxin decreased with age of the animal. Our findings indicate new roles in Fe metabolism for several mineral metabolism-associated genes and that some of these genes, such as SLC39A14, may be regulated in response to dietary Fe in pigs. Additionally, the expression of some genes examined in this study was affected by age, suggesting age dependency of Fe metabolism in pigs.
Assuntos
Envelhecimento/fisiologia , Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Expressão Gênica/efeitos dos fármacos , Hemoglobinas/metabolismo , Ferro da Dieta/farmacologia , Ferro/metabolismo , Envelhecimento/genética , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Proteínas de Transporte de Cátions/genética , Regulação para Baixo , Duodeno/metabolismo , Hepcidinas , Homeostase , Absorção Intestinal , Mucosa Intestinal/metabolismo , Ferro/sangue , Ferro da Dieta/sangue , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Fígado/metabolismo , Masculino , Miocárdio/metabolismo , RNA Mensageiro/metabolismo , Receptores da Transferrina/genética , Receptores da Transferrina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Receptores Depuradores Classe A/genética , Receptores Depuradores Classe A/metabolismo , Suínos , FrataxinaRESUMO
To investigate the effects of dietary iron (Fe) on manganese (Mn) metabolism, 24 weaned pigs (21 d old) were blocked by litter and weight and randomly assigned to the following treatments: 1) no supplemental Fe [low Fe (L-Fe)]; 2) 100 mg supplemental Fe/kg [adequate Fe (A-Fe)]; and 3) 500 mg supplemental Fe/kg [high Fe (H-Fe)]. The basal diet was analyzed to contain 20 mg Fe/kg. Tissues were harvested after 32 d of feeding. Daily gain (least square means +/- SEM) was greater in A-Fe pigs (328.3 +/- 29.9 g/d) than in L-Fe pigs (224.0 +/- 11.2 g/d). Hemoglobin concentrations on d 32 were lower in L-Fe pigs (62 +/- 3.5 g/L) than in A-Fe pigs (128 +/- 5.6 g/L) and did not differ between pigs fed A-Fe and H-Fe (133 +/- 12.0 g/L). Liver Fe increased with increasing dietary Fe. Relative hepatic hepcidin expression was greater in pigs fed A-Fe and H-Fe than in those fed L-Fe. Relative expressions of duodenal divalent metal transporter 1 (DMT1) and solute carrier family 39 member 14 (ZIP14) were increased in L-Fe pigs compared with H-Fe pigs. Liver copper (Cu) was higher in L-Fe (0.56 +/- 0.04 mmol/kg) and H-Fe (0.58 +/- 0.04 mmol/kg) pigs than in A-Fe pigs (0.40 +/- 0.04 mmol/kg). Liver Mn was lower in H-Fe pigs (0.15 +/- 0.01 mmol/kg) than in A-Fe (0.23 +/- 0.02 mmol/kg) or L-Fe pigs (0.20 +/- 0.02 mmol/kg). Duodenal Mn concentrations were greater in L-Fe pigs than in A-Fe or H-Fe pigs. Fe deficiency in pigs increased gene expression of duodenal metal transporters (DMT1 and ZIP14) and supplementation with H-Fe reduced expression of DMT1 and ZIP14, which may have decreased absorption of Mn.
Assuntos
Proteínas de Transporte de Cátions/metabolismo , Transporte de Íons/efeitos dos fármacos , Ferro da Dieta/farmacologia , Ferro/metabolismo , Manganês/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas de Transporte de Cátions/genética , Cobre/metabolismo , Suplementos Nutricionais , Duodeno/metabolismo , Expressão Gênica , Hemoglobinas/metabolismo , Hepcidinas , Fígado/metabolismo , Masculino , Suínos , Oligoelementos/farmacologia , Aumento de Peso/efeitos dos fármacosRESUMO
A study was conducted evaluating the effect of long-term Cu deficiency, with or without high Mn, on growth, gene expression and Cu status of beef cattle. Twenty-one Angus calves were born to cows receiving one of the following treatments: (1) 10 mg supplemental Cu/kg DM (+Cu); (2) no supplemental Cu and 2 mg Mo/kg DM ( - Cu); (3) - Cu diet plus 500 mg supplemental Mn/kg DM ( - Cu+Mn). Calves were weaned at approximately 183 d of age and individually fed throughout the growing and finishing phases. Plasma Cu was lower (P < 0.01) in - Cu calves compared with +Cu calves while high dietary Mn further depressed (P < 0.01) plasma Cu in - Cu+Mn calves v. - Cu calves. Liver Cu concentrations in +Cu calves were greater (P < 0.01) than in - Cu calves, with no differences between - Cu and - Cu+Mn calves. The daily body-weight gain of +Cu calves was greater (P < 0.01) than - Cu calves during the period from birth to weaning, but did not differ during the growing phase. - Cu+Mn calves gained less (P < 0.05) than - Cu calves during the growing phase. DM intake was lower (P < 0.01) in - Cu+Mn calves v. - Cu calves, and did not differ among +Cu and - Cu calves. The relative gene expression of cytochrome c oxidase in the liver was lower (P < 0.05) in - Cu calves compared with +Cu or - Cu+Mn calves. In conclusion, feeding a Cu - deficient diet in combination with high Mn negatively affected the growth and Cu status of beef cattle.
Assuntos
Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Bovinos/metabolismo , Cobre/deficiência , Manganês/administração & dosagem , Animais , Peso Corporal/efeitos dos fármacos , Bovinos/crescimento & desenvolvimento , Ciclo-Oxigenase 1/genética , Depressão Química , Feminino , Expressão Gênica/efeitos dos fármacos , Fígado/metabolismo , Masculino , Manganês/análise , Estado Nutricional , Distribuição Aleatória , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Superóxido Dismutase/genética , Superóxido Dismutase-1 , Fatores de TempoRESUMO
A number of antioxidants and trace minerals have important roles in immune function and may affect health in transition dairy cows. Vitamin E and beta-carotene are important cellular antioxidants. Selenium (Se) is involved in the antioxidant system via its role in the enzyme glutathione peroxidase. Inadequate dietary vitamin E or Se decreases neutrophil function during the perpariturient period. Supplementation of vitamin E and/or Se has reduced the incidence of mastitis and retained placenta, and reduced duration of clinical symptoms of mastitis in some experiments. Research has indicated that beta-carotene supplementation may enhance immunity and reduce the incidence of retained placenta and metritis in dairy cows. Marginal copper deficiency resulted in reduced neutrophil killing and decreased interferon production by mononuclear cells. Copper supplementation of a diet marginal in copper reduced the peak clinical response during experimental Escherichia coli mastitis. Limited research indicated that chromium supplementation during the transition period may increase immunity and reduce the incidence of retained placenta.
Assuntos
Antioxidantes/administração & dosagem , Bovinos/fisiologia , Nível de Saúde , Lactação/fisiologia , Oligoelementos/administração & dosagem , Ração Animal , Bem-Estar do Animal , Animais , Bovinos/imunologia , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/metabolismo , Doenças dos Bovinos/prevenção & controle , Feminino , Necessidades Nutricionais , Gravidez , Transtornos Puerperais/imunologia , Transtornos Puerperais/metabolismo , Transtornos Puerperais/prevenção & controle , Transtornos Puerperais/veterinária , Oligoelementos/imunologia , Vitamina E/administração & dosagem , Vitamina E/imunologiaRESUMO
Copper (Cu) is believed to be integral in prion biology and the lack of Cu or replacement by other metal ions on prions may be involved in prion diseases. This theory has not been evaluated in the bovine. Thus, mature cows were used to determine the effects of Cu deficiency on brain Cu concentrations and prion functional characteristics. Two Cu states were induced, Cu-adequate (n=4) and Cu-deficient (n=4). Copper deficiency resulted in decreased (44%) brain Cu concentrations but had no effect on prion concentrations. Based on Western blot analysis, the molecular weights, glycoform distributions, and elution profiles of brain prions were not affected by Cu status. Importantly, Cu status did not affect prion proteinase degradability as all prions were completely degraded by proteinase K. In conclusion, Cu status affected bovine brain Cu concentrations but had no detectable effects on brain prion protein characteristics.
Assuntos
Encéfalo/metabolismo , Cobre/deficiência , Cobre/metabolismo , Doenças Priônicas/metabolismo , Animais , Bovinos , Manganês/metabolismo , Peso Molecular , Príons/metabolismo , Superóxido Dismutase/metabolismoRESUMO
Absorption of selenium and copper is much lower in ruminants than in nonruminants. The low absorption of these minerals in ruminants is due to modifications that occur in the rumen environment. Selenium bioavailability is reduced by high dietary sulfur and the presence of cyanogenetic glycosides in certain legumes. Feeding organic selenium from selenomethionine or selenized yeast results in much higher tissue and milk selenium concentrations than are obtained with selenite. High dietary molybdenum in combination with moderate to high dietary sulfur results in formation of thiomolybdates in the rumen. Thiomolybdates greatly reduce copper absorption, and certain thiomolybdate species can be absorbed and interfere systemically with copper metabolism. Independent of molybdenum, high dietary sulfur reduces copper absorption perhaps via formation of copper sulfide. High dietary iron also reduces copper bioavailability. Dietary factors that affect bioavailability of zinc in ruminants are not well defined. Phytate does not affect zinc absorption in ruminants because microbial phytase in the rumen degrades phytate. Manganese is very poorly absorbed in ruminants, and limited research suggests that high dietary calcium and phosphorus may reduce manganese absorption.