Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 230
Filtrar
1.
Acta Biomater ; 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39393657

RESUMO

Tendrils of climbing plants possess a striking spring-like structure characterized by a minimum of two helices of opposite handedness connected by a perversion. By performing tensile experiments and morphological measurements on tendrils of the climbing passion flower Passiflora discophora, we show that these tendril springs act as coil springs within the plant's attachment system and resemble technical coil springs. However, tendril springs have a low spring index and a high pitch angle compared with typical metal coil springs resulting in a more complex loading situation in the plant tendrils. Moreover, the tendrils undergo a drastic shift from the fresh turgescent stage to a dried-off and dead senescent stage. This entails changes in material properties (elastic modulus in tension), morphology (tendril and helix diameter, number of windings), anatomy (tissue composition), and failure behavior (susceptibility to delamination) and reduces the degree of elasticity and strain at failure of the tendrils. Nevertheless, senescent tendrils remain functional as springs and maintain high energy dissipation capacity and high break force. This renders the system highly energy efficient, as the plant no longer needs to metabolically sustain the died-back tendrils. Because of its energy-storing spring system, its high energy dissipation and high safety factor, the attachment system can be considered a 'fail-safe' system. STATEMENT OF SIGNIFICANCE: The use of coil springs as mechanical devices is not restricted to man-made machinery; striking spring structures can also be found within the attachment systems of climbing plants. Passiflora discophora climbs by using long thin tendrils with adhesive pads at their tips. Once the pads have attached to a support, the tendrils coil and form a spring-like structure. Here, we analyze the form and mechanics of these 'tendril springs', compare them with conventional technical coil springs, and discuss changes in the tendril springs during plant development. We reveal the main features of the attachment system, which might inspire new artificial attachment devices within the emerging field of plant-inspired soft-robotics.

2.
Phys Rev Lett ; 133(4): 048301, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39121427

RESUMO

We investigate the structural and dynamic properties of active Brownian particles (APs) confined within a soft annulus-shaped channel. Depending on the strength of the confinement and the Péclet number, we observe a novel reentrant behavior that is not present in unconfined systems. Our findings are substantiated by numerical simulations and analytical considerations, revealing that this behavior arises from the strong coupling between the Péclet number and the effective confining dimensionality of the APs. Our work highlights the peculiarities of soft boundaries for APs and how clogging can be avoided under such conditions.

3.
Plants (Basel) ; 13(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39124196

RESUMO

Hygroscopic seed-scale movement is responsible for the weather-adaptive opening and closing of pine cones and for facilitating seed dispersal under favorable environmental conditions. Although this phenomenon has long been investigated, many involved processes are still not fully understood. To gain a deeper mechanical and structural understanding of the cone and its functional units, namely the individual seed scales, we have investigated their desiccation- and wetting-induced movement processes in a series of analyses and manipulative experiments. We found, for example, that the abaxial scale surface is responsible for the evaporation of water from the closed cone and subsequent cone opening. Furthermore, we tested the capability of dry and deformed scales to restore their original shape and biomechanical properties by wetting. These results shed new light on the orchestration of scale movement in cones and the involved forces and provide information about the functional robustness and resilience of cones, leading to a better understanding of the mechanisms behind hygroscopic pine cone opening, the respective ecological framework, and, possibly, to the development of smart biomimetic actuators.

4.
Biomimetics (Basel) ; 9(7)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39056880

RESUMO

With a focus on education and teaching, we provide general background information on bioinspired optimization methods by comparing the concept of optimization and the search for an optimum in engineering and biology. We introduce both the principles of Darwinian evolution and the basic evolutionary optimization procedure of evolution strategies. We provide three educational modules in work sheets that can be used by teachers and students to improve their understanding of evolution strategies. The educational module "Optimization of a Milk Carton" shows that the material consumption in producing a milk carton can be minimized using an evolution strategy with a mutative step size control. The use of a standard dice and a pocket calculator enables new milk cartons to be generated, with the offspring having the lowest material consumption becoming the parent of the next generation. The other educational modules deal with the so-called brachistochrone problem. The module "Fastest and Shortest Marble Track" provides a construction plan for a marble track whereby students can experimentally compare the "path of shortest length" with the "path of shortest time". The EvoBrach software, is used in the module "Various Marble Track Shapes" to compare the running times of a marble on a straight line, a parabola, and a brachistochrone. In conclusion, the introduction to the biomimetic method of evolution strategies and the educational modules should deepen the understanding of both optimization problems and biological evolution.

5.
Bioinspir Biomim ; 19(5)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38917810

RESUMO

Energy harvesting techniques can exploit even subtle passive motion like that of plant leaves in wind as a consequence of contact electrification of the leaf surface. The effect is strongly enhanced by artificial materials installed as 'artificial leaves' on the natural leaves creating a recurring mechanical contact and separation. However, this requires a controlled mechanical interaction between the biological and the artificial component during the complex wind motion. Here, we build and test four artificial leaf designs with varying flexibility and degrees of freedom across the blade operating onNerium oleanderplants. We evaluate the apparent contact area (up to 10 cm2per leaf), the leaves' motion, together with the generated voltage, current and charge in low wind speeds of up to 3.3 m s-1and less. Single artificial leaves produced over 75 V and 1µA current peaks. Softer artificial leaves increase the contact area accessible for energy conversion, but a balance between softer and stiffer elements in the artificial blade is optimal to increase the frequency of contact-separation motion (here up to 10 Hz) for energy conversion also below 3.3 m s-1. Moreover, we tested how multiple leaves operating collectively during continuous wind energy harvesting over several days achieve a root mean square power of ∼6µW and are capable to transfer ∼80µC every 30-40 min to power a wireless temperature and humidity sensor autonomously and recurrently. The results experimentally reveal design strategies for energy harvesters providing autonomous micro power sources in plant ecosystems for example for sensing in precision agriculture and remote environmental monitoring.


Assuntos
Desenho de Equipamento , Folhas de Planta , Vento , Folhas de Planta/fisiologia , Movimento (Física)
6.
Proc Natl Acad Sci U S A ; 121(27): e2320256121, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38941276

RESUMO

Active fluids composed of constituents that are constantly driven away from thermal equilibrium can support spontaneous currents and can be engineered to have unconventional transport properties. Here, we report the emergence of (meta)stable traveling bands in computer simulations of aligning circle swimmers. These bands are different from polar flocks and, through coupling phase with mass transport, induce a bulk particle current with a component perpendicular to the propagation direction, thus giving rise to a collective Hall (or Magnus) effect. Traveling bands require sufficiently small orbits and undergo a discontinuous transition into a synchronized state with transient polar clusters for large orbital radii. Within a minimal hydrodynamic theory, we show that the bands can be understood as nondispersive soliton solutions fully accounting for the numerically observed properties.

7.
Bioinspir Biomim ; 19(4)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38701824

RESUMO

The resilience of pine cone scales has been investigated in the context of current architectural efforts to develop bioinspired passive façade shading systems that can help regulate the indoor climate. As previously shown for other species, separated tissues ofPinus jeffreyipine cone scales show independent hygroscopic bending. The blocking force that pine cone scales can generate during a closing movement is shown to be affected by the length, width and mass of the scales. After cyclically actuating pine cone scales by submerging and drying them for 102 cycles and comparing their functional characteristics measured in the undamaged and damaged state, they were still able to achieve 97% of their undamaged blocking force and torque and over 94% of their undamaged opening angle. Despite evidence of cracking within the sclereid cell layer and extensive delamination of sclerenchyma fibres, no loss of function was observed in any tested pine cone scale. This functional resilience and robustness may allowP. jeffreyitrees to continue seed dispersal for longer periods of time and to reliably protect seeds that have not yet been released. These results have contributed to a better understanding of the pine cone scale and may provide inspiration for further improving the long-term performance of passive, hygro-sensitive façade shading systems.


Assuntos
Pinus , Cone de Plantas , Pinus/anatomia & histologia , Pinus/química , Cone de Plantas/anatomia & histologia , Cone de Plantas/química , Torque , Estresse Mecânico , Dispersão de Sementes
8.
Bioinspir Biomim ; 19(3)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38621389

RESUMO

In nature, leaves and their laminae vary in shape, appearance and unfolding behaviour. We investigated peltate leaves of two model species with peltate leaves and highly different morphology (Syngonium podophyllumandPilea peperomioides) and two distinct unfolding patterns via time-lapse recordings: we observed successive unfolding of leaf halves inS. podophyllumand simultaneous unfolding inP. peperomioides.Furthermore, we gathered relevant morphological and biomechanical data in juvenile (unfolding) and adult (fully unfolded) leaves of both species by measuring the thickness and the tensile modulus of both lamina and veins as a measure of their stiffness. InS. podophyllum, lamina and veins stiffen after unfolding, which may facilitate unfolding in the less stiff juvenile lamina. Secondary venation highly contributes to stiffness in the adult lamina ofS. podophyllum, while the lamina itself withstands tensile loads best in direction parallel to secondary veins. In contrast, the leaf ofP. peperomioideshas a higher lamina thickness and small, non-prominent venation and is equally stiff in every region and direction, although, as is the case inS. podophyllum, thickness and stiffness increase during ontogeny of leaves from juvenile to adult. It could be shown that (changes in) lamina thickness and stiffness can be well correlated with the unfolding processes of both model plants, so that we conclude that functional lamina morphology in juvenile and adult leaf stages and the ontogenetic transition while unfolding is highly dependent on biomechanical characteristics, though other factors are also taken into consideration and discussed.


Assuntos
Folhas de Planta , Folhas de Planta/fisiologia , Folhas de Planta/anatomia & histologia , Fenômenos Biomecânicos , Resistência à Tração/fisiologia
9.
Adv Mater ; 36(27): e2313906, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38583068

RESUMO

Advances in bioinspired and biohybrid robotics are enabling the creation of multifunctional systems able to explore complex unstructured environments. Inspired by Avena fruits, a biohybrid miniaturized autonomous machine (HybriBot) composed of a biomimetic biodegradable capsule as cargo delivery system and natural humidity-driven sister awns as biological motors is reported. Microcomputed tomography, molding via two-photon polymerization and casting of natural awns into biodegradable materials is employed to fabricate multiple HybriBots capable of exploring various soil and navigating soil irregularities, such as holes and cracks. These machines replicate the dispersal movements and biomechanical performances of natural fruits, achieving comparable capsule drag forces up to ≈0.38 N and awns torque up to ≈100 mN mm-1. They are functionalized with fertilizer and are successfully utilized to germinate selected diaspores. HybriBots function as self-dispersed systems with applications in reforestation and precision agriculture.


Assuntos
Agricultura , Avena , Frutas , Frutas/química , Avena/química , Robótica/instrumentação , Fertilizantes/análise , Solo/química , Materiais Biomiméticos/química
10.
Soft Matter ; 20(12): 2804-2811, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38446076

RESUMO

The peels of lime, lemon, pomelo and citron are investigated at macroscopic and microscopic level. The structural composition of the peels is compared and properties such as peel thickness, proportion of flavedo, density and proportion of intercellular spaces are determined. µCT images are used to visualize vascular bundles and oil glands. SEM images provide information about the appearance of the cellular tissue in the outer flavedo and inner albedo. The proportion of intercellular spaces is quantitatively determined by manual and software-assisted analysis (ilastik). While there are macroscopic differences in the fruits, they differ only slightly in the orientation of the vascular bundles and the arrangement of the oil glands. However, in peel thickness and flavedo thickness, the fruit peels differ significantly from each other. There are no significant differences between the two analysis methods used, although the use of ilastik is preferred due to time reduction of up to 70%. The large amount of intercellular spaces in the albedo but also the denser flavedo both have a mechanical protective function to prevent damage to the fruit. In addition, the entire peel structure is mechanically reinforced by vascular bundles. This combination of penetration protection (flavedo) and energy dissipation (albedo) makes Citrus spp. peels a promising inspiration for technical material systems.


Assuntos
Citrus , Citrus/química , Citrus/ultraestrutura , Microscopia , Frutas/química , Frutas/ultraestrutura
11.
Biomimetics (Basel) ; 9(2)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38392160

RESUMO

Wildfires are unplanned conflagrations perceived as a threat by humans. However, fires are essential for the survival of fire-adapted plants. On the one hand, wildfires cause major damage worldwide, burning large areas of forests and landscapes, threatening towns and villages, and generating high levels of air pollution. On the other hand, fire-adapted plants (pyrophytes) in the fire landscapes of the Earth are able to survive exposure to heat (e.g., because of their thick bark, which protects their living tissue) and benefit from fire directly (e.g., fire initiates cone opening and seed release) or indirectly (e.g., fewer competing plants of fire-sensitive species remain, seeds germinate in the ash-fertilized soil). We present the experimental set-up and results of a fire experiment on bark samples used as a basis to assess the fire tolerance of various trees. Fire tolerance is defined as the ability of a tree to survive a surface fire (up to 200 °C and 5 min duration). The measure of the fire tolerance for a tree species is the time taken for the vascular cambium under the insulating bark to reach the critical temperature of 60 °C. Within an educational module, we provide worksheets for teachers and students enabling them to analyze the fire tolerance of various tree barks.

12.
J Chem Phys ; 159(11)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37712784

RESUMO

Interpreting high-dimensional data from molecular dynamics simulations is a persistent challenge. In this paper, we show that for a small peptide, deca-alanine, metastable states can be identified through a neural net based on structural information alone. While processing molecular dynamics data, dimensionality reduction is a necessary step that projects high-dimensional data onto a low-dimensional representation that, ideally, captures the conformational changes in the underlying data. Conventional methods make use of the temporal information contained in trajectories generated through integrating the equations of motion, which forgoes more efficient sampling schemes. We demonstrate that EncoderMap, an autoencoder architecture with an additional distance metric, can find a suitable low-dimensional representation to identify long-lived molecular conformations using exclusively structural information. For deca-alanine, which exhibits several helix-forming pathways, we show that this approach allows us to combine simulations with different biasing forces and yields representations comparable in quality to other established methods. Our results contribute to computational strategies for the rapid automatic exploration of the configuration space of peptides and proteins.

13.
Adv Sci (Weinh) ; 10(28): e2301496, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37544907

RESUMO

Tendrils of climbing plants coil along their length, thus forming a striking helical spring and generating tensional forces. It is found that, for tendrils of the passion flower Passiflora caerulea, the generated force lies in the range of 6-140 mN, which is sufficient to lash the plant tightly to its substrate. Further, it is revealed that the generated force strongly correlates with the water status of the plant. Based on a combination of in situ force measurements with anatomical investigations and dehydration-rehydration experiments on both entire tendril segments and isolated lignified tissues, a two-phasic mechanism for spring formation is proposed. First, during the free coiling phase, the center of the tendril begins to lignify unilaterally. At this stage, both the generated tension and the stability of the form of the spring still depend on turgor pressure. The unilateral contraction of a bilayer as being the possible driving force for the tendril coiling motion is discussed. Second, in a stabilization phase, the entire center of the coiled tendril lignifies, stiffening the spring and securing its function irrespective of its hydration status.


Assuntos
Passiflora , Fenômenos Mecânicos
15.
Biomimetics (Basel) ; 8(3)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37504191

RESUMO

The first botanical gardens in Europe were established for the study of medicinal, poisonous, and herbal plants by students of medicine or pharmacy at universities. As the natural sciences became increasingly important in the 19th Century, botanical gardens additionally took on the role of public educational institutions. Since then, learning from living nature with the aim of developing technical applications, namely biomimetics, has played a special role in botanical gardens. Sir Joseph Paxton designed rainwater drainage channels in the roof of the Crystal Palace for the London World's Fair in 1881, having been inspired by the South American giant water lily (Victoria amazonica). The development of the Lotus-Effect® at the Botanical Garden Bonn was inspired by the self-cleaning leaf surfaces of the sacred lotus (Nelumbo nucifera). At the Botanic Garden Freiburg, a self-sealing foam coating for pneumatic systems was developed based on the self-sealing of the liana stems of the genus Aristolochia. Currently, botanical gardens are both research institutions and places of lifelong learning. Numerous botanical gardens provide biomimetics trails with information panels at each station for self-study and guided biomimetics tours with simple experiments to demonstrate the functional principles transferred from the biological model to the technical application. We present eight information panels suitable for setting up education about biomimetics and simple experiments to support guided garden tours about biomimetics.

16.
Biomimetics (Basel) ; 8(3)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37504217

RESUMO

Biomimetics (bionics, bioinspired technology) refers to research on living systems and attempts to transfer their properties to engineering applications [...].

17.
Biomolecules ; 13(7)2023 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-37509196

RESUMO

Glaucoma is a complex, multifactorial optic neuropathy mainly characterized by the progressive loss of retinal ganglion cells (RGCs) and their axons, resulting in a decline of visual function. The pathogenic molecular mechanism of glaucoma is still not well understood, and therapeutic strategies specifically addressing the neurodegenerative component of this ocular disease are urgently needed. Novel immunotherapeutics might overcome this problem by targeting specific molecular structures in the retina and providing direct neuroprotection via different modes of action. Within the scope of this research, the present study showed for the first time beneficial effects of the synthetic CDR1 peptide SCTGTSSDVGGYNYVSWYQ on the viability of RGCs ex vivo in a concentration-dependent manner compared to untreated control explants (CTRL, 50 µg/mL: p < 0.05 and 100 µg/mL: p < 0.001). Thereby, this specific peptide was identified first as a potential biomarker candidate in the serum of glaucoma patients and was significantly lower expressed in systemic IgG molecules compared to healthy control subjects. Furthermore, MS-based co-immunoprecipitation experiments confirmed the specific interaction of synthetic CDR1 with retinal acidic leucine-rich nuclear phosphoprotein 32A (ANP32A; p < 0.001 and log2 fold change > 3), which is a highly expressed protein in neurological tissues with multifactorial biological functions. In silico binding prediction analysis revealed the N-terminal leucine-rich repeat (LRR) domain of ANP32A as a significant binding site for synthetic CDR1, which was previously reported as an important docking site for protein-protein interactions (PPI). In accordance with these findings, quantitative proteomic analysis of the retinae ± CDR1 treatment resulted in the identification of 25 protein markers, which were significantly differentially distributed between both experimental groups (CTRL and CDR1, p < 0.05). Particularly, acetyl-CoA biosynthesis I-related enzymes (e.g., DLAT and PDHA1), as well as cytoskeleton-regulating proteins (e.g., MSN), were highly expressed by synthetic CDR1 treatment in the retina; on the contrary, direct ANP32A-interacting proteins (e.g., NME1 and PPP2R4), as well as neurodegenerative-related markers (e.g., CEND1), were identified with significant lower abundancy in the CDR1-treated retinae compared to CTRL. Furthermore, retinal protein phosphorylation and histone acetylation were also affected by synthetic CDR1, which are both partially controlled by ANP32A. In conclusion, the synthetic CDR1 peptide provides a great translational potential for the treatment of glaucoma in the future by eliciting its neuroprotective mechanism via specific interaction with ANP32A's N terminal LRR domain.


Assuntos
Glaucoma , Proteômica , Humanos , Leucina/metabolismo , Glaucoma/metabolismo , Células Ganglionares da Retina/metabolismo , Peptídeos/farmacologia , Peptídeos/metabolismo , Fosfoproteínas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo
18.
Biomimetics (Basel) ; 8(2)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37366828

RESUMO

Extrusion-based 4D-printing, which is an emerging field within additive manufacturing, has enabled the technical transfer of bioinspired self-shaping mechanisms by emulating the functional morphology of motile plant structures (e.g., leaves, petals, capsules). However, restricted by the layer-by-layer extrusion process, much of the resulting works are simplified abstractions of the pinecone scale's bilayer structure. This paper presents a new method of 4D-printing by rotating the printed axis of the bilayers, which enables the design and fabrication of self-shaping monomaterial systems in cross sections. This research introduces a computational workflow for programming, simulating, and 4D-printing differentiated cross sections with multilayered mechanical properties. Taking inspiration from the large-flowered butterwort (Pinguicula grandiflora), which shows the formation of depressions on its trap leaves upon contact with prey, we investigate the depression formation of bioinspired 4D-printed test structures by varying each depth layer. Cross-sectional 4D-printing expands the design space of bioinspired bilayer mechanisms beyond the XY plane, allows more control in tuning their self-shaping properties, and paves the way toward large-scale 4D-printed structures with high-resolution programmability.

19.
Sci Adv ; 9(15): eadf5443, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37058561

RESUMO

Emergent behavior in collectives of "robotic" units with limited capabilities that is robust and programmable is a promising route to perform tasks on the micro and nanoscale that are otherwise difficult to realize. However, a comprehensive theoretical understanding of the physical principles, in particular steric interactions in crowded environments, is still largely missing. Here, we study simple light-driven walkers propelled through internal vibrations. We demonstrate that their dynamics is well captured by the model of active Brownian particles, albeit with an angular speed that differs between individual units. Transferring to a numerical model, we show that this polydispersity of angular speeds gives rise to specific collective behavior: self-sorting under confinement and enhancement of translational diffusion. Our results show that, while naively perceived as imperfection, disorder of individual properties can provide another route to realize programmable active matter.

20.
Adv Mater ; 35(22): e2211902, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37024772

RESUMO

Motile organs have evolved in climbing plants enabling them to find a support and, after secure attachment, to reach for sunlight without investing in a self-supporting stem. Searching movements, the twining of stems, and the coiling of tendrils are involved in successful plant attachment. Such coiling movements have great potential in robotic applications, especially if they are reversible. Here, the underlying mechanism of tendril movement based on contractile fibers is reported, as illustrated by a function-morphological analysis of tendrils in several liana species and the encoding of such a principle in a core-shell multimaterial fiber (MMF) system. MMFs are composed of a shape-memory core fiber (SMCF) and an elastic shell. The shape-memory effect of the core fibers enables the implementation of strain mismatch in the MMF by physical means and provides thermally controlled reversible motion. The produced MMFs show coiling and/or uncoiling behavior, with a high reversible actuation magnitude of ≈400%, which is almost 20 times higher compared with similar stimuli for sensitive soft actuators. The movements in these MMFs rely on the crystallization/melting behavior of oriented macromolecules of SMCF.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA