Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Chromosoma ; 133(1): 15-36, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37581649

RESUMO

Genome stability is key for healthy cells in healthy organisms, and deregulated maintenance of genome integrity is a hallmark of aging and of age-associated diseases including cancer and neurodegeneration. To maintain a stable genome, genome surveillance and repair pathways are closely intertwined with cell cycle regulation and with DNA transactions that occur during transcription and DNA replication. Coordination of these processes across different time and length scales involves dynamic changes of chromatin topology, clustering of fragile genomic regions and repair factors into nuclear repair centers, mobilization of the nuclear cytoskeleton, and activation of cell cycle checkpoints. Here, we provide a general overview of cell cycle regulation and of the processes involved in genome duplication in human cells, followed by an introduction to replication stress and to the cellular responses elicited by perturbed DNA synthesis. We discuss fragile genomic regions that experience high levels of replication stress, with a particular focus on telomere fragility caused by replication stress at the ends of linear chromosomes. Using alternative lengthening of telomeres (ALT) in cancer cells and ALT-associated PML bodies (APBs) as examples of replication stress-associated clustered DNA damage, we discuss compartmentalization of DNA repair reactions and the role of protein properties implicated in phase separation. Finally, we highlight emerging connections between DNA repair and mechanobiology and discuss how biomolecular condensates, components of the nuclear cytoskeleton, and interfaces between membrane-bound organelles and membraneless macromolecular condensates may cooperate to coordinate genome maintenance in space and time.


Assuntos
Replicação do DNA , Homeostase do Telômero , Humanos , Reparo do DNA , DNA/metabolismo , Dano ao DNA , Telômero/metabolismo
2.
Nat Commun ; 14(1): 3848, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37385984

RESUMO

The Nucleosome Remodeling and Deacetylation (NuRD) complex is a crucial regulator of cellular differentiation. Two members of the Methyl-CpG-binding domain (MBD) protein family, MBD2 and MBD3, are known to be integral, but mutually exclusive subunits of the NuRD complex. Several MBD2 and MBD3 isoforms are present in mammalian cells, resulting in distinct MBD-NuRD complexes. Whether these different complexes serve distinct functional activities during differentiation is not fully explored. Based on the essential role of MBD3 in lineage commitment, we systematically investigated a diverse set of MBD2 and MBD3 variants for their potential to rescue the differentiation block observed for mouse embryonic stem cells (ESCs) lacking MBD3. While MBD3 is indeed crucial for ESC differentiation to neuronal cells, it functions independently of its MBD domain. We further identify that MBD2 isoforms can replace MBD3 during lineage commitment, however with different potential. Full-length MBD2a only partially rescues the differentiation block, while MBD2b, an isoform lacking an N-terminal GR-rich repeat, fully rescues the Mbd3 KO phenotype. In case of MBD2a, we further show that removing the methylated DNA binding capacity or the GR-rich repeat enables full redundancy to MBD3, highlighting the synergistic requirements for these domains in diversifying NuRD complex function.


Assuntos
Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Nucleossomos , Animais , Camundongos , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Isoformas de Proteínas/genética , Diferenciação Celular , Células-Tronco Embrionárias Murinas , Mamíferos
3.
Nat Struct Mol Biol ; 30(4): 451-462, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36894693

RESUMO

RPA has been shown to protect single-stranded DNA (ssDNA) intermediates from instability and breakage. RPA binds ssDNA with sub-nanomolar affinity, yet dynamic turnover is required for downstream ssDNA transactions. How ultrahigh-affinity binding and dynamic turnover are achieved simultaneously is not well understood. Here we reveal that RPA has a strong propensity to assemble into dynamic condensates. In solution, purified RPA phase separates into liquid droplets with fusion and surface wetting behavior. Phase separation is stimulated by sub-stoichiometric amounts of ssDNA, but not RNA or double-stranded DNA, and ssDNA gets selectively enriched in RPA condensates. We find the RPA2 subunit required for condensation and multi-site phosphorylation of the RPA2 N-terminal intrinsically disordered region to regulate RPA self-interaction. Functionally, quantitative proximity proteomics links RPA condensation to telomere clustering and integrity in cancer cells. Collectively, our results suggest that RPA-coated ssDNA is contained in dynamic RPA condensates whose properties are important for genome organization and stability.


Assuntos
Proteína de Replicação A , Telômero , Proteína de Replicação A/química , Telômero/metabolismo , RNA/metabolismo , DNA de Cadeia Simples , Ligação Proteica , Replicação do DNA
4.
Mod Pathol ; 36(7): 100167, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36990278

RESUMO

PARP inhibitors (PARPi) are increasingly used in breast cancer therapy, including high-grade triple-negative breast cancer (TNBC) treatment. Varying treatment responses and PARPi resistance with relapse currently pose limitations to the efficacy of PARPi therapy. The pathobiological reasons why individual patients respond differently to PARPi are poorly understood. In this study, we analyzed expression of PARP1, the main target of PARPi, in normal breast tissue, breast cancer, and its precursor lesions using human breast cancer tissue microarrays covering a total of 824 patients, including more than 100 TNBC cases. In parallel, we analyzed nuclear adenosine diphosphate (ADP)-ribosylation as a marker of PARP1 activity and TRIP12, an antagonist of PARPi-induced PARP1 trapping. Although we found PARP1 expression to be generally increased in invasive breast cancer, PARP1 protein levels and nuclear ADP-ribosylation were lower in higher tumor grade and TNBC samples than non-TNBCs. Cancers with low levels of PARP1 and low levels of nuclear ADP-ribosylation were associated with significantly reduced overall survival. This effect was even more pronounced in cases with high levels of TRIP12. These results indicate that PARP1-dependent DNA repair capacity may be compromised in aggressive breast cancers, potentially fueling enhanced accumulation of mutations. Moreover, the results revealed a subset of breast cancers with low PARP1, low nuclear ADP-ribosylation, and high TRIP12 levels, which may compromise their response to PARPi, suggesting a combination of markers for PARP1 abundance, enzymatic activity, and trapping capabilities might aid patient stratification for PARPi therapy.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Recidiva Local de Neoplasia , ADP-Ribosilação , Mutação , Proteínas de Transporte/metabolismo , Ubiquitina-Proteína Ligases/genética
5.
Cells ; 11(4)2022 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-35203293

RESUMO

Human CtIP is best known for its role in DNA end resection to initiate DNA double-strand break repair by homologous recombination. Recently, CtIP has also been shown to protect reversed replication forks from nucleolytic degradation upon DNA replication stress. However, still little is known about the DNA damage response (DDR) networks that preserve genome integrity and sustain cell survival in the context of CtIP insufficiency. Here, to reveal such potential buffering relationships, we screened a DDR siRNA library in CtIP-deficient cells to identify candidate genes that induce synthetic sickness/lethality (SSL). Our analyses unveil a negative genetic interaction between CtIP and BARD1, the heterodimeric binding partner of BRCA1. We found that simultaneous disruption of CtIP and BARD1 triggers enhanced apoptosis due to persistent replication stress-induced DNA lesions giving rise to chromosomal abnormalities. Moreover, we observed that the genetic interaction between CtIP and BARD1 occurs independently of the BRCA1-BARD1 complex formation and might be, therefore, therapeutical relevant for the treatment of BRCA-defective tumors.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Endodesoxirribonucleases , Proteínas Supressoras de Tumor , Ubiquitina-Proteína Ligases , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Genes Supressores de Tumor , Recombinação Homóloga , Humanos , Interferência de RNA , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
6.
Cell Biol Toxicol ; 38(5): 847-864, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34021431

RESUMO

Toxicity is not only a function of damage mechanisms, but is also determined by cellular resilience factors. Glutathione has been reported as essential element to counteract negative influences. The present work hence pursued the question how intracellular glutathione can be elevated transiently to render cells more resistant toward harmful conditions. The antibiotic nitrofurantoin (NFT) was identified to stimulate de novo synthesis of glutathione in the human hepatoma cell line, HepG2, and in primary human hepatocytes. In intact cells, activation of NFT yielded a radical anion, which subsequently initiated nuclear-factor-erythroid 2-related-factor-2 (Nrf2)-dependent induction of glutamate cysteine ligase (GCL). Application of siRNA-based intervention approaches confirmed the involvement of the Nrf2-GCL axis in the observed elevation of intracellular glutathione levels. Quantitative activation of Nrf2 by NFT, and the subsequent rise in glutathione, were similar as observed with the potent experimental Nrf2 activator diethyl maleate. The elevation of glutathione levels, observed even 48 h after withdrawal of NFT, rendered cells resistant to different stressors such as the mitochondrial inhibitor rotenone, the redox cycler paraquat, the proteasome inhibitors MG-132 or bortezomib, or high concentrations of NFT. Repurpose of the antibiotic NFT as activator of Nrf2 could thus be a promising strategy for a transient and targeted activation of the endogenous antioxidant machinery. Graphical abstract.


Assuntos
Glutamato-Cisteína Ligase , Fator 2 Relacionado a NF-E2 , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Bortezomib/farmacologia , Glutamato-Cisteína Ligase/metabolismo , Glutamato-Cisteína Ligase/farmacologia , Glutationa/metabolismo , Hepatócitos/metabolismo , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Nitrofurantoína/metabolismo , Nitrofurantoína/farmacologia , Estresse Oxidativo , Paraquat/metabolismo , Paraquat/farmacologia , Inibidores de Proteassoma/farmacologia , RNA Interferente Pequeno/metabolismo , Rotenona/metabolismo , Rotenona/farmacologia
7.
DNA Repair (Amst) ; 106: 103179, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34311273

RESUMO

Protein recruitment to DNA break sites is an integral part of the DNA damage response (DDR). Elucidation of the hierarchy and temporal order with which DNA damage sensors as well as repair and signaling factors assemble around chromosome breaks has painted a complex picture of tightly regulated macromolecular interactions that build specialized compartments to facilitate repair and maintenance of genome integrity. While many of the underlying interactions, e.g. between repair factors and damage-induced histone marks, can be explained by lock-and-key or induced fit binding models assuming fixed stoichiometries, structurally less well defined interactions, such as the highly dynamic multivalent interactions implicated in phase separation, also participate in the formation of multi-protein assemblies in response to genotoxic stress. Although much remains to be learned about these types of cooperative and highly dynamic interactions and their functional roles, the rapidly growing interest in material properties of biomolecular condensates and in concepts from polymer chemistry and soft matter physics to understand biological processes at different scales holds great promises. Here, we discuss nuclear condensates in the context of genome integrity maintenance, highlighting the cooperative potential between clustered stoichiometric binding and phase separation. Rather than viewing them as opposing scenarios, their combined effects can balance structural specificity with favorable physicochemical properties relevant for the regulation and function of multilayered nuclear condensates.


Assuntos
Núcleo Celular/metabolismo , Cromatina/metabolismo , Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Animais , Montagem e Desmontagem da Cromatina , DNA/metabolismo , Eucariotos/genética , Eucariotos/metabolismo , Humanos , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
8.
Sci Adv ; 7(31)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34330701

RESUMO

FAN1, a DNA structure-specific nuclease, interacts with MLH1, but the repair pathways in which this complex acts are unknown. FAN1 processes DNA interstrand crosslinks (ICLs) and FAN1 variants are modifiers of the neurodegenerative Huntington's disease (HD), presumably by regulating HD-causing CAG repeat expansions. Here, we identify specific amino acid residues in two adjacent FAN1 motifs that are critical for MLH1 binding. Disruption of the FAN1-MLH1 interaction confers cellular hypersensitivity to ICL damage and defective repair of CAG/CTG slip-outs, intermediates of repeat expansion mutations. FAN1-S126 phosphorylation, which hinders FAN1-MLH1 association, is cell cycle-regulated by cyclin-dependent kinase activity and attenuated upon ICL induction. Our data highlight the FAN1-MLH1 complex as a phosphorylation-regulated determinant of ICL response and repeat stability, opening novel paths to modify cancer and neurodegeneration.


Assuntos
Endodesoxirribonucleases , Exodesoxirribonucleases , DNA , Dano ao DNA , Endodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Enzimas Multifuncionais/genética
9.
Life Sci Alliance ; 4(6)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33811064

RESUMO

DNA double-strand breaks can be repaired by non-homologous end-joining or homologous recombination. Which pathway is used depends on the balance between the tumor suppressors 53BP1 and BRCA1 and on the availability of an undamaged template DNA for homology-directed repair. How cells switch from a 53BP1-dominated to a BRCA1-governed homologous recombination response as they progress through the cell cycle is incompletely understood. Here we reveal, using high-throughput microscopy and applying single cell normalization to control for increased genome size as cells replicate their DNA, that 53BP1 recruitment to damaged replicated chromatin is inefficient in both BRCA1-proficient and BRCA1-deficient cells. Our results substantiate a dual switch model from a 53BP1-dominated response in unreplicated chromatin to a BRCA1-BARD1-dominated response in replicated chromatin, in which replication-coupled dilution of 53BP1's binding mark H4K20me2 functionally cooperates with BRCA1-BARD1-mediated suppression of 53BP1 binding. More generally, we suggest that appropriate normalization of single cell data, for example, to DNA content, provides additional layers of information, which can be critical for quantifying and interpreting cellular phenotypes.


Assuntos
Proteína BRCA1/genética , Reparo do DNA/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Proteína BRCA1/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Cromatina/genética , DNA/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades/genética , Reparo do DNA/fisiologia , Replicação do DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , Genes BRCA1 , Células HeLa , Histonas/metabolismo , Recombinação Homóloga/genética , Humanos , Proteínas Supressoras de Tumor/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Ubiquitina-Proteína Ligases/metabolismo
10.
Mol Cell ; 79(3): 504-520.e9, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32707033

RESUMO

Protein kinases are essential for signal transduction and control of most cellular processes, including metabolism, membrane transport, motility, and cell cycle. Despite the critical role of kinases in cells and their strong association with diseases, good coverage of their interactions is available for only a fraction of the 535 human kinases. Here, we present a comprehensive mass-spectrometry-based analysis of a human kinase interaction network covering more than 300 kinases. The interaction dataset is a high-quality resource with more than 5,000 previously unreported interactions. We extensively characterized the obtained network and were able to identify previously described, as well as predict new, kinase functional associations, including those of the less well-studied kinases PIM3 and protein O-mannose kinase (POMK). Importantly, the presented interaction map is a valuable resource for assisting biomedical studies. We uncover dozens of kinase-disease associations spanning from genetic disorders to complex diseases, including cancer.


Assuntos
Redes Reguladoras de Genes , Doenças Genéticas Inatas/genética , Neoplasias/genética , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Biologia Computacional/métodos , Conjuntos de Dados como Assunto , Regulação da Expressão Gênica , Ontologia Genética , Doenças Genéticas Inatas/enzimologia , Doenças Genéticas Inatas/patologia , Humanos , Redes e Vias Metabólicas/genética , Anotação de Sequência Molecular , Distrofias Musculares/enzimologia , Distrofias Musculares/genética , Distrofias Musculares/patologia , Neoplasias/enzimologia , Neoplasias/patologia , Doenças Neurodegenerativas/enzimologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Mapeamento de Interação de Proteínas/métodos , Proteínas Quinases/química , Proteínas Quinases/classificação , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA