Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Nanoscale Adv ; 5(12): 3348-3356, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37325541

RESUMO

Hybrid structures with an interface between two different materials with properly aligned energy levels facilitate photo-induced charge separation to be exploited in optoelectronic applications. Particularly, the combination of 2D transition metal dichalcogenides (TMDCs) and dye molecules offers strong light-matter interaction, tailorable band level alignments, and high fluorescence quantum yields. In this work, we aim at the charge or energy transfer-related quenching of the fluorescence of the dye perylene orange (PO) when isolated molecules are brought onto monolayer TMDCs via thermal vapor deposition. Here, micro-photoluminescence spectroscopy revealed a strong intensity drop of the PO fluorescence. For the TMDC emission, in contrast, we observed a relative growth of the trion versus exciton contribution. In addition, fluorescence imaging lifetime microscopy quantified the intensity quenching to a factor of about 103 and demonstrated a drastic lifetime reduction from 3 ns to values much shorter than the 100 ps width of the instrument response function. From the ratio of the intensity quenching that is attributed to hole or energy transfer from dye to semiconductor, we deduce a time constant of several picoseconds at most, pointing to an efficient charge separation suitable for optoelectronic devices.

2.
Cells ; 11(17)2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36078058

RESUMO

An extensive research field in regenerative medicine is electrical stimulation (ES) and its impact on tissue and cells. The mechanism of action of ES, particularly the role of electrical parameters like intensity, frequency, and duration of the electric field, is not yet fully understood. Human MG-63 osteoblasts were electrically stimulated for 10 min with a commercially available multi-channel system (IonOptix). We generated alternating current (AC) electrical fields with a voltage of 1 or 5 V and frequencies of 7.9 or 20 Hz, respectively. To exclude liquid-mediated effects, we characterized the AC-stimulated culture medium. AC stimulation did not change the medium's pH, temperature, and oxygen content. The H2O2 level was comparable with the unstimulated samples except at 5 V_7.9 Hz, where a significant increase in H2O2 was found within the first 30 min. Pulsed electrical stimulation was beneficial for the process of attachment and initial adhesion of suspended osteoblasts. At the same time, the intracellular Ca2+ level was enhanced and highest for 20 Hz stimulated cells with 1 and 5 V, respectively. In addition, increased Ca2+ mobilization after an additional trigger (ATP) was detected at these parameters. New knowledge was provided on why electrical stimulation contributes to cell activation in bone tissue regeneration.


Assuntos
Cálcio , Peróxido de Hidrogênio , Cálcio/metabolismo , Sinalização do Cálcio , Estimulação Elétrica , Humanos , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Osteoblastos/metabolismo
3.
Beilstein J Nanotechnol ; 12: 242-256, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777612

RESUMO

The functionality of living cells is inherently linked to subunits with dimensions ranging from several micrometers down to the nanometer scale. The cell surface plays a particularly important role. Electric signaling, including information processing, takes place at the membrane, as well as adhesion and contact. For osteoblasts, adhesion and spreading are crucial processes with regard to bone implants. Here we present a comprehensive characterization of the 3D nanomorphology of living, as well as fixed, osteoblastic cells using scanning ion conductance microscopy (SICM), which is a nanoprobing method that largely avoids mechanical perturbations. Dynamic ruffles are observed, manifesting themselves in characteristic membrane protrusions. They contribute to the overall surface corrugation, which we systematically study by introducing the relative 3D excess area as a function of the projected adhesion area. A clear anticorrelation between the two parameters is found upon analysis of ca. 40 different cells on glass and on amine-covered surfaces. At the rim of lamellipodia, characteristic edge heights between 100 and 300 nm are observed. Power spectral densities of membrane fluctuations show frequency-dependent decay exponents with absolute values greater than 2 on living osteoblasts. We discuss the capability of apical membrane features and fluctuation dynamics in aiding the assessment of adhesion and migration properties on a single-cell basis.

4.
Membranes (Basel) ; 10(11)2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33126526

RESUMO

Ionic liquids are highly charged compounds with increasing applications in material science. A universal approach to synthesize free-standing, vinylalkylimidazolium bromide-containing membranes with an adjustable thickness is presented. By the variation of alkyl side chains, membrane characteristics such as flux and mechanical properties can be adjusted. The simultaneous use of different ionic liquids (ILs) in the synthesis can also improve the membrane properties. In separation application, these charged materials allowed us to retain charged sugars, such as calcium gluconate, by up to 95%, while similar neutral compounds such as glucose passed the membrane. An analysis of the surface conditions using atomic force microscopy (AFM) confirmed the experimental data and explains the decreasing permeance and increased retention of the charged sugars.

5.
Beilstein J Nanotechnol ; 11: 1264-1271, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32953370

RESUMO

In a liquid-STM setup environment, the redox behavior of manganese porphyrins was studied at various solid-liquid interfaces. In the presence of a solution of Mn(III)Cl porphyrins in 1-phenyloctane, which was placed at a conductive surface, large and constant additional currents relative to a set tunneling current were observed, which varied with the magnitude of the applied bias voltage. These currents occurred regardless of the type of surface (HOPG or Au(111)) or tip material (PtIr, Au or W). The additional currents were ascribed to the occurrence of redox reactions in which chloride is oxidized to chlorine and the Mn(III) center of the porphyrin moiety is reduced to Mn(II). The resulting Mn(II) porphyrin products were identified by UV-vis analysis of the liquid phase. For solutions of Mn(III) porphyrins with non-redox active acetate instead of chloride axial ligands, the currents remained absent.

6.
Molecules ; 24(16)2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31434280

RESUMO

The synthesis and surface self-assembly behavior of two types of metal-porphyrin dimers is described. The first dimer type consists of two porphyrins linked via a rigid conjugated spacer, and the second type has an alkyne linker, which allows rotation of the porphyrin moieties with respect to each other. The conjugated dimers were equipped with two copper or two manganese centers, while the flexible dimers allowed a modular built-up that also made the incorporation of two different metal centers possible. The self-assembly of the new porphyrin dimers at a solid-liquid interface was investigated at the single-molecule scale using scanning tunneling microscopy (STM). All dimers formed monolayers, of which the stability and the internal degree of ordering of the molecules depended on the metal centers in the porphyrins. While in all monolayers the dimers were oriented coplanar with respect to the underlying surface ('face-on'), the flexible dimer containing a manganese and a copper center could be induced, via the application of a voltage pulse in the STM setup, to self-assemble into monolayers in which the porphyrin dimers adopted a non-common perpendicular ('edge-on') geometry with respect to the surface.


Assuntos
Porfirinas/química , Cobre/química , Dimerização , Manganês/química , Microscopia de Tunelamento , Porfirinas/síntese química , Imagem Individual de Molécula/métodos
7.
Chemphyschem ; 15(16): 3484-8, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25146424

RESUMO

Molecules of (5,10,15,20-tetraundecylporphyrinato)-copper(II) [(TUP)Cu] can self-assemble into four different polymorphs at the interface between highly oriented pyrolytic graphite and 1-octanoic acid. Scanning tunneling microscopy (STM) reveals that it is possible to combine the global control over monolayer structure, provided by the composition and concentration of the supernatant solution, with local control, from nanomanipulation by the STM tip. In the initially formed monolayer, with a polymorph composition governed by the concentration of (TUP)Cu in the supernatant solution, the exchange of molecules physisorbed at the solid/liquid interface with those in the liquid is very limited. By using a nanoshaving procedure at the tip, defects are created in the monolayer, and these serve as local manipulation sites to create domains of higher or lower molecular density, and to incorporate a second molecular species, (TUP)Co into the monolayer of (TUP)Cu.


Assuntos
Nanoestruturas/química , Porfirinas/química , Caprilatos/química , Grafite/química , Microscopia de Tunelamento , Nanoestruturas/ultraestrutura
8.
Nat Chem ; 5(7): 621-7, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23787754

RESUMO

Manganese porphyrins have been extensively investigated as model systems for the natural enzyme cytochrome P450 and as synthetic oxidation catalysts. Here, we report single-molecule studies of the multistep reaction of manganese porphyrins with molecular oxygen at a solid/liquid interface, using a scanning tunnelling microscope (STM) under environmental control. The high lateral resolution of the STM, in combination with its sensitivity to subtle differences in the electronic properties of molecules, allowed the detection of at least four distinct reaction species. Real-space and real-time imaging of reaction dynamics enabled the observation of active sites, immobile on the experimental timescale. Conversions between the different species could be tuned by the composition of the atmosphere (argon, air or oxygen) and the surface bias voltage. By means of extensive comparison of the results to those obtained by analogous solution-based chemistry, we assigned the observed species to the starting compound, reaction intermediates and products.


Assuntos
Manganês/química , Oxigênio/química , Porfirinas/química , Microscopia de Tunelamento , Oxirredução
9.
Phys Chem Chem Phys ; 15(30): 12451-8, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23620134

RESUMO

Self-assembled monolayers of meso-5,10,15,20-tetrakis(undecyl)porphyrin copper(II) on a graphite/1-octanoic acid interface have been studied by Scanning Tunnelling Microscopy. Four distinct polymorphs were observed, varying in their unit cell size. Arrays of unit cells of the various polymorphs seamlessly connect to each other via shared unit cell vectors. The monolayers are not commensurate, but coincident with the underlying graphite substrate. The seamless transition between the polymorphs is proposed to be the result of an adaptation of the molecular conformations in the polymorphs and at the boundaries, which is enabled by the conformational freedom of the alkyl tails of these molecules.


Assuntos
Porfirinas/química , Adsorção , Caprilatos/química , Cobre/química , Grafite/química , Microscopia de Tunelamento , Conformação Molecular
10.
J Am Chem Soc ; 134(16): 7186-92, 2012 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-22475214

RESUMO

A bis-Zn(salphen) structure shows extremely strong self-assembly both in solution as well as at the solid-liquid interface as evidenced by scanning tunneling microscopy, competitive UV-vis and fluorescence titrations, dynamic light scattering, and transmission electron microscopy. Density functional theory analysis on the Zn(2) complex rationalizes the very high stability of the self-assembled structures provoked by unusual oligomeric (Zn-O)(n) coordination motifs within the assembly. This coordination mode is strikingly different when compared with mononuclear Zn(salphen) analogues that form dimeric structures having a typical Zn(2)O(2) central unit. The high stability of the multinuclear structure therefore holds great promise for the development of stable self-assembled monolayers with potential for new opto-electronic materials.

11.
Ultramicroscopy ; 111(12): 1659-69, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22094372

RESUMO

Single-molecule force spectroscopy studies performed by Atomic Force Microscopes (AFMs) strongly rely on accurately determined cantilever spring constants. Hence, to calibrate cantilevers, a reliable calibration protocol is essential. Although the thermal noise method and the direct Sader method are frequently used for cantilever calibration, there is no consensus on the optimal calibration of soft and V-shaped cantilevers, especially those used in force spectroscopy. Therefore, in this study we aimed at establishing a commonly accepted approach to accurately calibrate compliant and V-shaped cantilevers. In a round robin experiment involving eight different laboratories we compared the thermal noise and the Sader method on ten commercial and custom-built AFMs. We found that spring constants of both rectangular and V-shaped cantilevers can accurately be determined with both methods, although the Sader method proved to be superior. Furthermore, we observed that simultaneous application of both methods on an AFM proved an accurate consistency check of the instrument and thus provides optimal and highly reproducible calibration. To illustrate the importance of optimal calibration, we show that for biological force spectroscopy studies, an erroneously calibrated cantilever can significantly affect the derived (bio)physical parameters. Taken together, our findings demonstrated that with the pre-established protocol described reliable spring constants can be obtained for different types of cantilevers.


Assuntos
Microscopia de Força Atômica/instrumentação , Microscopia de Força Atômica/métodos , Análise Espectral/métodos , Algoritmos , Calibragem , Ligantes , Modelos Teóricos , Análise Espectral/instrumentação , Eletricidade Estática
12.
Chem Commun (Camb) ; 47(34): 9666-8, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21799980

RESUMO

The transition from low to high density 2D surface structures of copper porphyrins at a liquid/solid interface requires specific defects at which nearly all exchange of physisorbed molecules with those dissolved in the supernatant occurs.

13.
Langmuir ; 27(6): 2644-51, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21329373

RESUMO

The copper porphyrin (5,10,15,20-tetraundecylporphyrinato)copper(II) can be templated in a well-defined arrangement using p-(hexadecyloxycarbonyl)phenylacetylene as a command layer on graphite. The bicomponent system was characterized at the submolecular level at a solid/liquid interface by scanning tunneling microscopy (STM). It is proposed that the layer of copper porphyrins is templated on top of the command layer in a hierarchical fashion, via a combination of intermolecular π-π stacking and van der Waals interactions. A very subtle effect, i.e., a superstructure in the alkyl chain region of the phenylacetylene monolayers, was identified as a decisive factor for the templating process.

14.
Chem Commun (Camb) ; 46(15): 2548-50, 2010 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-20461869

RESUMO

Nickel salophens exclusively form monolayers at a liquid-solid interface, while in contrast zinc salophens mainly self-assemble into bilayers via axial ligand self-coordination which can be disrupted by the addition of pyridine axial ligands.

15.
Langmuir ; 26(9): 6357-66, 2010 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-20225883

RESUMO

By using the nanografting method, well-defined nanoscale patches of alkanethiols were constructed in a self-assembled monolayer (SAM) matrix on an atomically flat gold (Au(111)) surface. A series of nanografted patches, composed of alkanethiols with different end groups (-CH(3), -CF(3), -OH, -SH, -COOH, and -NH(2)), were analyzed in detail by a combination of atomic force microscopy (AFM) height and quantitative lateral friction measurements. By constructing a series of nanografted patches of methyl-terminated thiols with various chain lengths, it was shown that the absolute friction of the nanografted patches was always smaller than that of the surrounding SAM matrix, demonstrating that, because of the spatially confined self-assembly during nanografting, SAMs show less defects. In addition, the friction gradually increased for decreasing alkane chain length as expected, although a subtle odd-even effect was observed. The study of thiols with functionalized end groups (-CF(3), -OH, -SH, -COOH, and -NH(2)) gave specific insights in orientation, packing, and structure of the molecules in the SAMs. Depending on the thiol end groups, these nanografted patches exhibited large and specific differences in lateral friction force, which offers the unique possibility to use the friction as a molecular recognition tool for thiol-based self-assembled monolayers.


Assuntos
Alcanos/química , Fricção , Compostos de Sulfidrila/química , Ouro/química , Microscopia de Força Atômica , Nanoestruturas/química , Compostos de Sulfidrila/análise
16.
Colloids Surf B Biointerfaces ; 76(1): 63-9, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19896810

RESUMO

DNA was immobilized on highly oriented pyrolytic graphite (HOPG) surfaces modified in octadecylamine (ODA) vapor. ODA molecules, deposited from the vapor phase onto HOPG form a nanostructured surface, which was utilized as a template for DNA adsorption. Peculiarities of double- and single-stranded DNA adsorption on these surfaces were investigated with atomic force microscopy (AFM) both in air, liquid and under different salt conditions. AFM images of DNA molecules immobilized on octadecylamine modified HOPG reveal a segmented shape of biopolymers: it constitutes straight segments with sharp turns at angles 120 degrees or 60 degrees between them, reflecting the symmetry of the underlying pattern. The analysis of DNA conformations on ODA modified HOPG surface has shown that under certain conditions DNA equilibrates on the surface on the scale of the whole molecule. A persistence length estimate of 97nm was determined for those molecules. Participation of different forces in the ODA pattern driven DNA assembly is discussed.


Assuntos
Aminas/química , DNA/química , Grafite/química , Adsorção , DNA/classificação , Microscopia de Força Atômica , Conformação Molecular , Propriedades de Superfície , Volatilização
17.
Nano Lett ; 8(11): 4014-9, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18844429

RESUMO

We use scanning tunnelling microscopy (STM) to controllably contact individual CdSe quantum dots (QDs) in a multilayer array to study electrical contacts to a model QD solid. The probability of electron injection into the QD array depends strongly on the symmetry of the QD wave functions and their response to the local electric field. Quantitative spectroscopy of the QD energy levels is possible if the potential distribution in the STM tip-QD array-substrate system is taken into account.

18.
J Phys Chem A ; 112(33): 7734-8, 2008 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-18665571

RESUMO

Calculations on crystalline organic radicals were performed to establish the ground states of these materials. These calculations show that the radicals may interact, depending on their orientation in the crystal structure. For galvinxoyl, a second structure is proposed which is similar to that of azagalvinoxyl, in which the radicals form pairs. This structure accounts for the anomalous magnetic properties of galvinoxyl at low temperatures.

19.
Nano Lett ; 8(1): 253-9, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18052231

RESUMO

We have investigated in detail the self-assembly of a chiral porphyrin trimer in different solvents and correlated this behavior to the aggregation of the molecule at a solid-liquid interface. In n-hexane and cyclohexane, CD spectroscopy and dynamic and static light scattering studies showed that the porphyrin trimer self-assembles already at micromolar concentrations into long, chiral supramolecular polymers, which precipitate as fibers when the solution is drop-cast onto a mica surface. In contrast, in chloroform, the compound is molecularly dissolved up to concentrations of 0.2 mM and when micromolar solutions are drop-cast onto mica, no precipitation of large assemblies occurs. Instead, at the moment that the chloroform film becomes subject to spinodal dewetting and the porphyrin trimers within this film start to self-assemble, extended patterns of equidistant lines of single molecule thick columnar stacks are formed.

20.
J Cell Sci ; 120(Pt 22): 3965-76, 2007 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-17971418

RESUMO

The activated leukocyte cell adhesion molecule (ALCAM) mediates dynamic homotypic and heterotypic cellular interactions. Whereas homotypic ALCAM-ALCAM interactions have been implicated in the development and maintenance of tissue architecture and tumor progression, heterotypic ALCAM-CD6 interactions act to initiate and stabilize T-cell-dendritic-cell interactions affecting T-cell activation. The ability to resist the forces acting on the individual bonds during these highly dynamic cellular contacts is thought to be crucial for the (patho)physiology of ALCAM-mediated cell adhesion. Here, we used atomic force microscopy to characterize the relationship between affinity, avidity and the stability of ALCAM-mediated interactions under external loading, at the single-molecule level. Disruption of the actin cytoskeleton resulted in enhanced ALCAM binding avidity, without affecting the tensile strength of the individual bonds. Force spectroscopy revealed that the ALCAM-CD6 bond displayed a significantly higher tensile strength, a smaller reactive compliance and an up to 100-fold lower dissociation rate in the physiological force window in comparison to the homotypic interaction. These results indicate that homotypic and heterotypic ALCAM-mediated adhesion are governed by significantly distinct kinetic and mechanical properties, providing novel insight into the role of ALCAM during highly dynamic cellular interactions.


Assuntos
Molécula de Adesão de Leucócito Ativado/metabolismo , Actinas/metabolismo , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Adesão Celular , Sobrevivência Celular , Citoesqueleto/metabolismo , Humanos , Células K562 , Cinética , Microscopia de Força Atômica , Ligação Proteica , Análise Espectral , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA