Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Genet ; 142(12): 1705-1720, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37861717

RESUMO

Arboleda-Tham Syndrome (ARTHS) is a rare genetic disorder caused by heterozygous, de novo mutations in Lysine(K) acetyltransferase 6A (KAT6A). ARTHS is clinically heterogeneous and characterized by several common features, including intellectual disability, developmental and speech delay, and hypotonia, and affects multiple organ systems. KAT6A is the enzymatic core of a histone-acetylation protein complex; however, the direct histone targets and gene regulatory effects remain unknown. In this study, we use ARTHS patient (n = 8) and control (n = 14) dermal fibroblasts and perform comprehensive profiling of the epigenome and transcriptome caused by KAT6A mutations. We identified differential chromatin accessibility within the promoter or gene body of 23% (14/60) of genes that were differentially expressed between ARTHS and controls. Within fibroblasts, we show a distinct set of genes from the posterior HOXC gene cluster (HOXC10, HOXC11, HOXC-AS3, HOXC-AS2, and HOTAIR) that are overexpressed in ARTHS and are transcription factors critical for early development body segment patterning. The genomic loci harboring HOXC genes are epigenetically regulated with increased chromatin accessibility, high levels of H3K23ac, and increased gene-body DNA methylation compared to controls, all of which are consistent with transcriptomic overexpression. Finally, we used unbiased proteomic mass spectrometry and identified two new histone post-translational modifications (PTMs) that are disrupted in ARTHS: H2A and H3K56 acetylation. Our multi-omics assays have identified novel histone and gene regulatory roles of KAT6A in a large group of ARTHS patients harboring diverse pathogenic mutations. This work provides insight into the role of KAT6A on the epigenomic regulation in somatic cell types.


Assuntos
Epigênese Genética , Histonas , Humanos , Histonas/genética , Histonas/metabolismo , Proteômica , Cromatina , Mutação , Fatores de Transcrição/genética , Proteínas de Homeodomínio/genética , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo
2.
bioRxiv ; 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37577627

RESUMO

Arboleda-Tham Syndrome (ARTHS) is a rare genetic disorder caused by heterozygous, de novo truncating mutations in Lysine(K) acetyltransferase 6A (KAT6A). ARTHS is clinically heterogeneous and characterized by several common features including intellectual disability, developmental and speech delay, hypotonia and affects multiple organ systems. KAT6A is highly expressed in early development and plays a key role in cell-type specific differentiation. KAT6A is the enzymatic core of a histone-acetylation protein complex, however the direct histone targets and gene regulatory effects remain unknown. In this study, we use ARTHS patient (n=8) and control (n=14) dermal fibroblasts and perform comprehensive profiling of the epigenome and transcriptome caused by KAT6A mutations. We identified differential chromatin accessibility within the promoter or gene body of 23%(14/60) of genes that were differentially expressed between ARTHS and controls. Within fibroblasts, we show a distinct set of genes from the posterior HOXC gene cluster (HOXC10, HOXC11, HOXC-AS3, HOXC-AS2, HOTAIR) that are overexpressed in ARTHS and are transcription factors critical for early development body segment patterning. The genomic loci harboring HOXC genes are epigenetically regulated with increased chromatin accessibility, high levels of H3K23ac, and increased gene-body DNA methylation compared to controls, all of which are consistent with transcriptomic overexpression. Finally, we used unbiased proteomic mass spectrometry and identified two new histone post-translational modifications (PTMs) that are disrupted in ARTHS: H2A and H3K56 acetylation. Our multi-omics assays have identified novel histone and gene regulatory roles of KAT6A in a large group of ARTHS patients harboring diverse pathogenic mutations. This work provides insight into the role of KAT6A on the epigenomic regulation in somatic cell types.

3.
HGG Adv ; 3(3): 100112, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35599848

RESUMO

Congenital heart disease (CHD) is a rare structural defect that occurs in ∼1% of live births. Studies on CHD genetic architecture have identified pathogenic single-gene mutations in less than 30% of cases. Single-gene mutations often show incomplete penetrance and variable expressivity. Therefore, we hypothesize that genetic background may play a role in modulating disease expression. Polygenic risk scores (PRSs) aggregate effects of common genetic variants to investigate whether, cumulatively, these variants are associated with disease penetrance or severity. However, the major limitations in this field have been in generating sufficient sample sizes for these studies. Here we used CHD-phenotype matched genome-wide association study (GWAS) summary statistics from the UK Biobank (UKBB) as our base study and whole-genome sequencing data from the CHD cohort (n1 = 711 trios, n2 = 362 European trios) of the Gabriella Miller Kids First dataset as our target study to develop PRSs for CHD. PRSs estimated using a GWAS for heart valve problems and heart murmur explain 2.5% of the variance in case-control status of CHD (all SNVs, p = 7.90 × 10-3; fetal cardiac SNVs, p = 8.00 × 10-3) and 1.8% of the variance in severity of CHD (fetal cardiac SNVs, p = 6.20 × 10-3; all SNVs, p = 0.015). These results show that common variants captured in CHD phenotype-matched GWASs have a modest but significant contribution to phenotypic expression of CHD. Further exploration of the cumulative effect of common variants is necessary for understanding the complex genetic etiology of CHD and other rare diseases.

4.
Sci Data ; 5: 180258, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30457569

RESUMO

Clinical case reports (CCRs) provide an important means of sharing clinical experiences about atypical disease phenotypes and new therapies. However, published case reports contain largely unstructured and heterogeneous clinical data, posing a challenge to mining relevant information. Current indexing approaches generally concern document-level features and have not been specifically designed for CCRs. To address this disparity, we developed a standardized metadata template and identified text corresponding to medical concepts within 3,100 curated CCRs spanning 15 disease groups and more than 750 reports of rare diseases. We also prepared a subset of metadata on reports on selected mitochondrial diseases and assigned ICD-10 diagnostic codes to each. The resulting resource, Metadata Acquired from Clinical Case Reports (MACCRs), contains text associated with high-level clinical concepts, including demographics, disease presentation, treatments, and outcomes for each report. Our template and MACCR set render CCRs more findable, accessible, interoperable, and reusable (FAIR) while serving as valuable resources for key user groups, including researchers, physician investigators, clinicians, data scientists, and those shaping government policies for clinical trials.


Assuntos
Estudos Clínicos como Assunto , Curadoria de Dados , Metadados , Biologia Computacional , Análise de Dados , Curadoria de Dados/métodos , Curadoria de Dados/normas , Humanos , Metadados/normas
5.
Am J Hum Genet ; 101(5): 737-751, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29100087

RESUMO

Although genetic correlations between complex traits provide valuable insights into epidemiological and etiological studies, a precise quantification of which genomic regions disproportionately contribute to the genome-wide correlation is currently lacking. Here, we introduce ρ-HESS, a technique to quantify the correlation between pairs of traits due to genetic variation at a small region in the genome. Our approach requires GWAS summary data only and makes no distributional assumption on the causal variant effect sizes while accounting for linkage disequilibrium (LD) and overlapping GWAS samples. We analyzed large-scale GWAS summary data across 36 quantitative traits, and identified 25 genomic regions that contribute significantly to the genetic correlation among these traits. Notably, we find 6 genomic regions that contribute to the genetic correlation of 10 pairs of traits that show negligible genome-wide correlation, further showcasing the power of local genetic correlation analyses. Finally, we report the distribution of local genetic correlations across the genome for 55 pairs of traits that show putative causal relationships.


Assuntos
Predisposição Genética para Doença/genética , Variação Genética/genética , Locos de Características Quantitativas/genética , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Humanos , Desequilíbrio de Ligação/genética , Modelos Genéticos , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA