Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioresour Technol ; 128: 431-7, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23201525

RESUMO

Green seaweed Ulva lactuca harvested from the North Sea near Zeeland (The Netherlands) was characterized as feedstock for acetone, ethanol and ethanol fermentation. Solubilization of over 90% of sugars was achieved by hot-water treatment followed by hydrolysis using commercial cellulases. A hydrolysate was used for the production of acetone, butanol and ethanol (ABE) by Clostridium acetobutylicum and Clostridium beijerinckii. Hydrolysate-based media were fermentable without nutrient supplementation. C. beijerinckii utilized all sugars in the hydrolysate and produced ABE at high yields (0.35 g ABE/g sugar consumed), while C. acetobutylicum produced mostly organic acids (acetic and butyric acids). These results demonstrate the great potential of U. lactuca as feedstock for fermentation. Interestingly, in control cultures of C. beijerinckii on rhamnose and glucose, 1,2 propanediol was the main fermentation product (9.7 g/L).


Assuntos
Acetona/metabolismo , Butanóis/metabolismo , Clostridium/metabolismo , Etanol/metabolismo , Alga Marinha/microbiologia , Acetona/isolamento & purificação , Biomassa , Butanóis/isolamento & purificação , Etanol/isolamento & purificação
2.
Biomacromolecules ; 11(12): 3578-83, 2010 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-21070024

RESUMO

The complex formation between ß-lactoglobulin and pectins of varying overall charge and local charge density were investigated. Isothermal titration calorimetry experiments were carried out to determine the enthalpic contribution to the complex formation at pH 4.25 and various ionic strengths. Complex formation was found to be an exothermic process for all conditions. Combination with previously published binding constants by Sperber et al. (Sperber, B. L. H. M.; Cohen Stuart, M. A.; Schols, H. A.; Voragen, A. G. J.; Norde, W. Biomacromolecules 2009, 10, 3246-3252) allows for the determination of the changes in the Gibbs energy and the change in entropy of the system upon complex formation between ß-lactoglobulin and pectin. The local charge density of pectin is found to determine the balance between enthalpic and entropic contributions. For a high local charge density pectin, the main contribution to the Gibbs energy is of an enthalpic nature, supported by a favorable entropy effect due to the release of small counterions. A pectin with a low local charge density has a more even distribution of the enthalpic and entropic part to the change of the Gibbs energy. The enthalpic part is reduced due to the lower charge density, while the relative increase of the entropic contribution is thought to be caused by a change in the location of the binding place for pectin on the ß-lactoglobulin molecule. The association of the hydrophobic methyl esters on pectin with an exposed hydrophobic region on ß-lg results in the release of water molecules from the hydrophobic region and surrounding the methyl esters of the pectin molecule. An increase in the ionic strength decreases the enthalpic contribution due to the shielding of electrostatic attraction in favor of the entropic contribution, supporting the idea that the release of water molecules from hydrophobic areas plays a part in the complex formation.


Assuntos
Lactoglobulinas/química , Pectinas/química , Eletricidade Estática , Termodinâmica , Sítios de Ligação , Calorimetria , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Concentração Osmolar , Ligação Proteica
3.
Biomacromolecules ; 10(12): 3246-52, 2009 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-19904952

RESUMO

The formation of complexes between proteins and polysaccharides is of great importance for many food systems like foams, emulsions, acidified milk drinks, and so on. The complex formation between beta-lactoglobulin (beta-lg) and pectins with a well-defined physicochemical fine structure has been studied to elucidate the influence of overall charge and local charge density of pectin on the complex formation. Binding isotherms of beta-lg to pectin are constructed using fluorescence anisotropy, which is shown to be an excellent technique for this purpose, as it is fast and requires low sample volumes. From the binding isotherms the maximal adsorbed amount, binding constant (k(obs)) and the cooperativity of binding are obtained at different ionic strengths. The Hill model is used to fit the binding isotherms and is shown to be preferable over a Langmuir fit. At pH 4.25, k(obs) shows a maximum at an ionic strength of 10 mM when using a low methyl esterified pectin (LMP) due to the balance of attractive and repulsive electrostatic forces between beta-lg and pectin and beta-lg neighbors. For two high methyl esterified pectins, one with a blockwise distribution of methyl esters (HMP(B)) and one with a random distribution (HMP(R)), this ionic strength maximum is absent and k(obs) decreases with increasing ionic strength. k(obs) is found to be largest for LMP and HMP(B) and considerably lower for HMP(R). A positive cooperativity is observed for both LMP (above an ionic strength of 45 mM) and HMP(R) (above an ionic strength of 15 mM) but not for HMP(B). Positive cooperativity is thought to be caused by a rearrangement of the pectin helix structure caused by binding of beta-lg, thus creating new or binding sites with a higher affinity. To attain strong binding of beta-lg to pectin it is preferable to use a pectin with a blockwise distribution of methyl esters. When complex formation takes place in high ionic strength media an LMP gives the best results, while at low ionic strength a high methyl esterified pectin with blockwise distribution may give better results, due to reduced electrostatic repulsion between both pectin and beta-lg and beta-lg neighbors.


Assuntos
Lactoglobulinas/química , Pectinas/química , Polarização de Fluorescência , Ácidos Hexurônicos/química , Concentração Osmolar , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA