Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Med Phys ; 49(11): 6765-6773, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36114793

RESUMO

PURPOSE: FLASH radiotherapy (FLASH-RT) is the potential for a major breakthrough in cancer care, as preclinical results have shown significantly reduced toxicities to healthy tissues while maintaining excellent tumor control. However, FLASH conditions were not considered in the current proton facilities' shielding designs. The purpose of this study is to validate the adequacy of conventionally shielded proton rooms used for FLASH-RT. METHODS: Clinical FLASH irradiations typically take place in a few 100 ms, orders of magnitude shorter than the response time of the wide-energy neutron detector (WENDI-II). The nozzle beam current (representing the dose rate) dependence of the WENDI-II detector response was empirically determined to stabilize with a beam current of ≤10 nA at the measurement point with the highest dose rate. A large, predefined proton transmission FLASH plan (250 MeV, 7 × 20 cm2 , 8 Gy at isocenter) was commissioned as part of a FLASH clinical trial. For purpose of this study, that field was adjusted from 250 to 244 MeV, allowing a lower beam current of 10 nA to provide reliable detector response. Radiation surveys were performed for the proton beams with/without extra beam stopper (30 × 30 × 40-cm3 solid water slabs) at 0°, 90°, 180°, and 270° gantry angles. RESULTS: Ambient doses were recorded at seven different locations. A 170-nA beam current, commonly used for clinical FLASH plans, was chosen to normalize the average ambient dose rate to FLASH conditions. Assuming 200-Gy/h workload (25 FLASH beams, 8 Gy/beam), annual occupational dose at controlled areas was calculated. For all gantry angles, ≤0.4 mSv/year is expected at treatment room door. The highest ambient dose, 2.46 mSv/year, ∼5% of the maximum annual permissible occupational dose, was identified at the isocenter of the adjacent treatment room with 90° gantry. CONCLUSION: These survey results indicate that our conventionally shielded proton rotating gantry rooms result in acceptable occupational and public doses when the transmission FLASH beams delivered at four cardinal gantry angles based on 200-Gy/h workload assumption. These findings support that FLASH clinical trials in our conventionally shielded proton facilities can be safely implemented.


Assuntos
Prótons
2.
Med Phys ; 49(9): 6171-6182, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35780318

RESUMO

PURPOSE: To provide ultrahigh dose rate (UHDR) pencil beam scanning (PBS) proton dosimetry comparison of clinically used plane-parallel ion chambers, PTW (Physikalisch-Technische Werkstaetten) Advanced Markus and IBA (Ion Beam Application) PPC05, with a proton graphite calorimeter in a support of first in-human proton FLASH clinical trial. METHODS: Absolute dose measurement intercomparison of the plane-parallel plate ion chambers and the proton graphite calorimeter was performed at 5-cm water-equivalent depth using rectangular 250-MeV single-layer treatment plans designed for the first in-human FLASH clinical trial. The dose rate for each field was designed to remain above 60 Gy/s. The ion recombination effects of the plane-parallel plate ion chambers at various bias voltages were also investigated in the range of dose rates between 5 and 60 Gy/s. Two independent model-based extrapolation methods were used to calculate the ion recombination correction factors ks to compare with the two-voltage technique from most widely used clinical protocols. RESULTS: The mean measured dose to water with the proton graphite calorimeter across all the predefined fields is 7.702 ± 0.037 Gy. The average ratio over the predefined fields of the PTW Advanced Markus chamber dose to the calorimeter reference dose is 1.002 ± 0.007, whereas the IBA PPC05 chamber shows ∼3% higher reading of 1.033 ± 0.007. The relative differences in the ks values determined from between the linear and quadratic extrapolation methods and the two-voltage technique for the PTW Advanced Markus chamber are not statistically significant, and the trends of dose rate dependence are similar. The IBA PPC05 shows a flat response in terms of ion recombination effects based on the ks values calculated using the two-voltage technique. Differences in ks values for the PPC05 between the two-voltage technique and other model-based extrapolation methods are not statistically significant at FLASH dose rates. Some of the ks values for the PPC05 that were extrapolated from the three-voltage linear method and the semiempirical model were reported less than unity possibly due to the charge multiplication effect, which was negligible compared to the volume recombination effect in FLASH dose rates. CONCLUSIONS: The absolute dose measurements of both PTW Advanced Markus and IBA PPC05 chambers are in a good agreement with the National Physical Laboratory graphite calorimeter reference dose considering overall uncertainties. Both ion chambers also demonstrate good reproducibility as well as stability as reference dosimeters in UHDR PBS proton radiotherapy. The dose rate dependency of the ion recombination effects of both ion chambers in cyclotron generated PBS proton beams is acceptable and therefore, both chambers are suitable to use in clinical practice for the range of dose rates between 5 and 60 Gy/s.


Assuntos
Grafite , Prótons , Protocolos Clínicos , Humanos , Radiometria/métodos , Reprodutibilidade dos Testes , Água
3.
Cancers (Basel) ; 13(5)2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33804336

RESUMO

Ultra-high dose rate radiation has been reported to produce a more favorable toxicity and tumor control profile compared to conventional dose rates that are used for patient treatment. So far, the so-called FLASH effect has been validated for electron, photon and scattered proton beam, but not yet for proton pencil beam scanning (PBS). Because PBS is the state-of-the-art delivery modality for proton therapy and constitutes a wide and growing installation base, we determined the benefit of FLASH PBS on skin and soft tissue toxicity. Using a pencil beam scanning nozzle and the plateau region of a 250 MeV proton beam, a uniform physical dose of 35 Gy (toxicity study) or 15 Gy (tumor control study) was delivered to the right hind leg of mice at various dose rates: Sham, Conventional (Conv, 1 Gy/s), Flash60 (57 Gy/s) and Flash115 (115 Gy/s). Acute radiation effects were quantified by measurements of plasma and skin levels of TGF-ß1 and skin toxicity scoring. Delayed irradiation response was defined by hind leg contracture as a surrogate of irradiation-induced skin and soft tissue toxicity and by plasma levels of 13 different cytokines (CXCL1, CXCL10, Eotaxin, IL1-beta, IL-6, MCP-1, Mip1alpha, TNF-alpha, TNF-beta, VEGF, G-CSF, GM-CSF and TGF- ß1). Plasma and skin levels of TGF-ß1, skin toxicity and leg contracture were all significantly decreased in FLASH compared to Conv groups of mice. FLASH and Conv PBS had similar efficacy with regards to growth control of MOC1 and MOC2 head and neck cancer cells transplanted into syngeneic, immunocompetent mice. These results demonstrate consistent delivery of FLASH PBS radiation from 1 to 115 Gy/s in a clinical gantry. Radiation response following delivery of 35 Gy indicates potential benefits of FLASH versus conventional PBS that are related to skin and soft tissue toxicity.

4.
J Appl Clin Med Phys ; 21(4): 59-67, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32170992

RESUMO

Pencil beam scanning proton therapy makes possible intensity modulation, resulting in improved target dose conformity and organ-at-risk (OAR) dose sparing. This benefit, however, results in increased sensitivity to certain clinical and beam delivery parameters, such as respiratory motion. These effects can cause plan degeneration, which could lead to decreased tumor dose or increased OAR dose. This study evaluated the measurements of proton pencil beam scanning delivery made with a 2D ion chamber array in solid water on a 1D motion platform, where respiratory motion was simulated using sine and cosine4 waves representing sinusoidal symmetric and realistic asymmetric breathing motions, respectively. Motion amplitudes were 0.5 cm and 1 cm corresponding to 1 cm and 2 cm of maximum respiratory excursions, respectively, with 5 sec fixed breathing cycle. The treatment plans were created to mimic spherical targets of 3 cm or 10 cm diameter located at 5 cm or 1 cm depth in solid water phantom. A reference RBE dose of 200 cGy per fraction was delivered in 1, 5, 10, and 15 fractions for each dataset. We evaluated dose conformity and uniformity at the center plane of targets by using the Conformation Number and the Homogeneity Index, respectively. Results indicated that dose conformity as well as homogeneity was more affected by motion for smaller targets. Dose conformity was better achieved for symmetric breathing patterns than asymmetric breathing patterns regardless of the number of fractions. The presence of a range shifter with shallow targets reduced the motion effect by improving dose homogeneity. While motion effects are known to be averaged out over the course of multifractional treatments, this might not be true for proton pencil beam scanning under asymmetrical breathing pattern.


Assuntos
Fracionamento da Dose de Radiação , Movimento , Neoplasias/radioterapia , Terapia com Prótons/normas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Imagens de Fantasmas , Terapia com Prótons/métodos , Prótons , Radiometria , Reprodutibilidade dos Testes , Respiração
5.
JCI Insight ; 3(17)2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30185671

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung disease causing fibrotic remodeling of the peripheral lung, leading to respiratory failure. Peripheral pulmonary epithelial cells lose normal alveolar epithelial gene expression patterns and variably express genes associated with diverse conducting airway epithelial cells, including basal cells. Single-cell RNA sequencing of pulmonary epithelial cells isolated from IPF lung tissue demonstrated altered expression of LncRNAs, including increased MEG3. MEG3 RNA was highly expressed in subsets of the atypical IPF epithelial cells and correlated with conducting airway epithelial gene expression patterns. Expression of MEG3 in human pulmonary epithelial cell lines increased basal cell-associated RNAs, including TP63, KRT14, STAT3, and YAP1, and enhanced cell migration, consistent with a role for MEG3 in regulating basal cell identity. MEG3 reduced expression of TP73, SOX2, and Notch-associated RNAs HES1 and HEY1, in primary human bronchial epithelial cells, demonstrating a role for MEG3 in the inhibition of genes influencing basal cell differentiation into club, ciliated, or goblet cells. MEG3 induced basal cell genes and suppressed genes associated with terminal differentiation of airway cells, supporting a role for MEG3 in regulation of basal progenitor cell functions, which may contribute to tissue remodeling in IPF.


Assuntos
Diferenciação Celular/fisiologia , Células Epiteliais/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Sítios de Ligação , Biomarcadores , Diferenciação Celular/genética , Linhagem Celular , Movimento Celular , Regulação da Expressão Gênica , Humanos , Fibrose Pulmonar Idiopática/genética , Queratina-14/genética , Pulmão/metabolismo , Regiões Promotoras Genéticas , Fator de Transcrição STAT3/genética , Análise de Sequência de RNA , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA