Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 5366, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36100609

RESUMO

Historically, xenia effects were hypothesized to be unique genetic contributions of pollen to seed phenotype, but most examples represent standard complementation of Mendelian traits. We identified the imprinted dosage-effect defective1 (ded1) locus in maize (Zea mays) as a paternal regulator of seed size and development. Hypomorphic alleles show a 5-10% seed weight reduction when ded1 is transmitted through the male, while homozygous mutants are defective with a 70-90% seed weight reduction. Ded1 encodes an R2R3-MYB transcription factor expressed specifically during early endosperm development with paternal allele bias. DED1 directly activates early endosperm genes and endosperm adjacent to scutellum cell layer genes, while directly repressing late grain-fill genes. These results demonstrate xenia as originally defined: Imprinting of Ded1 causes the paternal allele to set the pace of endosperm development thereby influencing grain set and size.


Assuntos
Impressão Genômica , Zea mays , Alelos , Endosperma/genética , Sementes/genética , Zea mays/genética
2.
Plant Cell ; 31(3): 715-733, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30760564

RESUMO

The last eukaryotic common ancestor had two classes of introns that are still found in most eukaryotic lineages. Common U2-type and rare U12-type introns are spliced by the major and minor spliceosomes, respectively. Relatively few splicing factors have been shown to be specific to the minor spliceosome. We found that the maize (Zea mays) RNA binding motif protein 48 (RBM48) is a U12 splicing factor that functions to promote cell differentiation and repress cell proliferation. RBM48 is coselected with the U12 splicing factor, zinc finger CCCH-type, RNA binding motif, and Ser/Arg rich 2/Rough endosperm 3 (RGH3). Protein-protein interactions between RBM48, RGH3, and U2 Auxiliary Factor (U2AF) subunits suggest major and minor spliceosome factors required for intron recognition form complexes with RBM48. Human RBM48 interacts with armadillo repeat containing 7 (ARMC7). Maize RBM48 and ARMC7 have a conserved protein-protein interaction. These data predict that RBM48 is likely to function in U12 splicing throughout eukaryotes and that U12 splicing promotes endosperm cell differentiation in maize.


Assuntos
Proteínas de Plantas/metabolismo , Splicing de RNA , RNA Nuclear Pequeno/metabolismo , Spliceossomos , Zea mays/genética , Diferenciação Celular , Endosperma/genética , Endosperma/fisiologia , Íntrons/genética , Fenótipo , Proteínas de Plantas/genética , RNA Nuclear Pequeno/genética , Motivos de Ligação ao RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Zea mays/fisiologia
3.
J Exp Bot ; 64(8): 2231-42, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23530131

RESUMO

Plants have duplicate versions of the oxidative pentose phosphate pathway (oxPPP) enzymes with a subset localized to the chloroplast. The chloroplast oxPPP provides NADPH and pentose sugars for multiple metabolic pathways. This study identified two loss-of-function alleles of the Zea mays (maize) chloroplast-localized oxPPP enzyme 6-phosphogluconate dehydrogenase (6PGDH). These mutations caused a rough endosperm seed phenotype with reduced embryo oil and endosperm starch. Genetic translocation experiments showed that pgd3 has separate, essential roles in both endosperm and embryo development. Endosperm metabolite profiling experiments indicated that pgd3 shifts redox-related metabolites and increases reducing sugars similar to starch-biosynthetis mutants. Heavy isotope-labelling experiments indicates that carbon flux into starch is altered in pgd3 mutants. Labelling experiments with a loss of cytosolic 6PGDH did not affect flux into starch. These results support the known role for plastid-localized oxPPP in oil synthesis and argue that amyloplast-localized oxPPP reactions are integral to endosperm starch accumulation in maize kernels.


Assuntos
Cloroplastos/metabolismo , Endosperma/metabolismo , Fosfogluconato Desidrogenase/metabolismo , Amido/biossíntese , Zea mays/metabolismo , Cloroplastos/enzimologia , Endosperma/enzimologia , Endosperma/ultraestrutura , Fosfogluconato Desidrogenase/fisiologia , Zea mays/enzimologia
4.
Theor Appl Genet ; 120(2): 369-81, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19898829

RESUMO

Heterosis is the superior performance of hybrids over their inbred parents. Despite its importance, little is known about the genetic and molecular basis of this phenomenon. Heterosis has been extensively exploited in plant breeding, particularly in maize (Zea mays, L.), and is well documented in the B73 and Mo17 maize inbred lines and their F1 hybrids. In this study, we determined the dry matter, the levels of starch and protein components and a total of 24 low-molecular weight metabolites including sugars, sugar-phosphates, and free amino acids, in developing maize kernels between 8 and 30 days post-pollination (DPP) of the hybrid B73 x Mo17 and its parental lines. The tissue specificity of amino acid and protein content was investigated between 16 and 30 DPP. Key observations include: (1) most of the significant differences in the investigated tissue types occurred between Mo17 and the other two genotypes; (2) heterosis of dry matter and metabolite content was detectable from the early phase of kernel development onwards; (3) the majority of metabolites exhibited an additive pattern. Nearly 10% of the metabolites exhibited nonadditive effects such as overdominance, underdominance, and high-parent and low-parent dominance; (4) The metabolite composition was remarkably dependent on kernel age, and this large developmental effect could possibly mask genotypic differences; (5) the metabolite profiles and the heterotic patterns are specific for endosperm and embryo. Our findings illustrate the power of metabolomics to characterize heterotic maize lines and suggest that the metabolite composition is a potential marker in the context of heterosis research.


Assuntos
Aminoácidos/metabolismo , Metabolismo dos Carboidratos , Vigor Híbrido , Zea mays/genética , Perfilação da Expressão Gênica , Hibridização Genética , Endogamia , Proteínas de Plantas/metabolismo , RNA Mensageiro/metabolismo , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
5.
Phytochemistry ; 67(14): 1460-75, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16815503

RESUMO

The central carbohydrate metabolism provides the precursors for the syntheses of various storage products in seeds. While the underlying biochemical map is well established, little is known about the organization and flexibility of carbohydrate metabolic fluxes in the face of changing biosynthetic demands or other perturbations. This question was addressed in developing kernels of maize (Zea mays L.), a model system for the study of starch and sugar metabolism. (13)C-labeling experiments were carried out with inbred lines, heterotic hybrids, and starch-deficient mutants that were selected to cover a wide range of performances and kernel phenotypes. In total, 46 labeling experiments were carried out using either [U-(13)C(6)]glucose or [U-(13)C(12)]sucrose and up to three stages of kernel development. Carbohydrate flux distributions were estimated based on glucose isotopologue abundances, which were determined in hydrolysates of starch by using quantitative (13)C-NMR and GC-MS. Similar labeling patterns in all samples indicated robustness of carbohydrate fluxes in maize endosperm, and fluxes were rather stable in response to glucose or sucrose feeding and during development. A lack of ADP-glucose pyrophosphorylase in the bt2 and sh2 mutants triggered significantly increased hexose cycling. In contrast, other mutations with similar kernel phenotypes had no effect. Thus, the distribution of carbohydrate fluxes is stable and not determined by sink strength in maize kernels.


Assuntos
Metabolismo dos Carboidratos , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Espectroscopia de Ressonância Magnética , Zea mays/química , Zea mays/genética
6.
Phytochemistry ; 66(22): 2632-42, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16274711

RESUMO

Developing kernels of the inbred maize line W22 were grown in sterile culture and supplied with a mixture of [U-13C6]glucose and unlabeled glucose during three consecutive intervals (11-18, 18-25, or 25-32 days after pollination) within the linear phase of starch formation. At the end of each labeling period, glucose was prepared from starch and analyzed by 13C isotope ratio mass spectrometry and high-resolution (13)C NMR spectroscopy. The abundances of individual glucose isotopologs were calculated by computational deconvolution of the NMR data. [1,2-(13)C2]-, [5,6-(13)C2]-, [2,3-(13)C2]-, [4,5-(13)C2]-, [1,2,3-(13)C3]-, [4,5,6-(13)C3]-, [3,4,5,6-(13)C4]-, and [U-(13)C6]-isotopologs were detected as the major multiple-labeled glucose species, albeit at different normalized abundances in the three intervals. Relative flux contributions by five different pathways in the primary carbohydrate metabolism were determined by computational simulation of the isotopolog space of glucose. The relative fractions of some of these processes in the overall glucose cycling changed significantly during maize kernel development. The simulation showed that cycling via the non-oxidative pentose phosphate pathway was lowest during the middle interval of the experiment. The observed flux pattern could by explained by a low demand for amino acid precursors recruited from the pentose phosphate pathway during the middle interval of kernel development.


Assuntos
Metabolismo dos Carboidratos , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Biologia Computacional , Hidrólise , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Zea mays/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA