Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
NMR Biomed ; 37(3): e5073, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37990800

RESUMO

The goal of this study was to investigate the origin of brain lactate (Lac) signal in the healthy anesthetized rat after injection of hyperpolarized (HP) [1-13 C]pyruvate (Pyr). Dynamic two-dimensional spiral chemical shift imaging with flow-sensitizing gradients revealed reduction in both vascular and brain Pyr, while no significant dependence on the level of flow suppression was detected for Lac. These results support the hypothesis that the HP metabolites predominantly reside in different compartments in the brain (i.e., Pyr in the blood and Lac in the parenchyma). Data from high-resolution metabolic imaging of [1-13 C]Pyr further demonstrated that Lac detected in the brain was not from contributions of vascular signal attributable to partial volume effects. Additionally, metabolite distributions and kinetics measured with dynamic imaging after injection of HP [1-13 C]Lac were similar to Pyr data when Pyr was used as the substrate. These data do not support the hypothesis that Lac observed in the brain after Pyr injection was generated in other organs and then transported across the blood-brain barrier (BBB). Together, the presented results provide further evidence that even in healthy anesthetized rats, the transport of HP Pyr across the BBB is sufficiently fast to permit detection of its metabolic conversion to Lac within the brain.


Assuntos
Ácido Láctico , Ácido Pirúvico , Ratos , Animais , Ácido Pirúvico/metabolismo , Ácido Láctico/metabolismo , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Barreira Hematoencefálica/diagnóstico por imagem , Isótopos de Carbono/metabolismo
2.
Magn Reson Med ; 91(1): 39-50, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37796151

RESUMO

PURPOSE: To explore the potential of 3T deuterium metabolic imaging (DMI) using a birdcage 2 H radiofrequency (RF) coil in both healthy volunteers and patients with central nervous system (CNS) lesions. METHODS: A modified gradient filter, home-built 2 H volume RF coil, and spherical k-space sampling were employed in a three-dimensional chemical shift imaging acquisition to obtain high-quality whole-brain metabolic images of 2 H-labeled water and glucose metabolic products. These images were acquired in a healthy volunteer and three subjects with CNS lesions of varying pathologies. Hardware and pulse sequence experiments were also conducted to improve the signal-to-noise ratio of DMI at 3T. RESULTS: The ability to quantify local glucose metabolism in correspondence to anatomical landmarks across patients with varying CNS lesions is demonstrated, and increased lactate is observed in one patient with the most active disease. CONCLUSION: DMI offers the potential to examine metabolic activity in human subjects with CNS lesions with DMI at 3T, promising for the potential of the future clinical translation of this metabolic imaging technique.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Deutério , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Razão Sinal-Ruído , Glucose
3.
NMR Biomed ; 35(9): e4752, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35483967

RESUMO

Here, we report on the development and performance of a robust 3-T single-voxel proton magnetic resonance spectroscopy (1 H MRS) experimental protocol and data analysis pipeline for quantifying brain metabolism during cardiopulmonary bypass (CPB) surgery in a neonatal porcine model, with the overall goal of elucidating primary mechanisms of brain injury associated with these procedures. The specific aims were to assess which metabolic processes can be reliably interrogated by 1 H MRS on a 3-T clinical scanner and to provide an initial assessment of brain metabolism during deep hypothermia cardiac arrest (DHCA) surgery and recovery. Fourteen neonatal pigs underwent CPB surgery while placed in a 3-T MRI scanner for 18, 28, and 37°C DHCA studies under hyperglycemic, euglycemic, and hypoglycemic conditions. Total imaging times, including baseline measurements, circulatory arrest (CA), and recovery averaged 3 h/animal, during which 30-40 single-voxel 1 H MRS spectra (sLASER pulse sequence, TR/TE = 2000/30 ms, 64 or 128 averages) were acquired from a 2.2-cc right midbrain voxel. 1 H MRS at 3 T was able to reliably quantify (1) anaerobic metabolism via depletion of brain glucose and the associated build-up of lactate during CA, (2) phosphocreatine (PCr) to creatine (Cr) conversion during CA and subsequent recovery upon reperfusion, (3) a robust increase in the glutamine-to-glutamate (Gln/Glu) ratio during the post-CA recovery period, and (4) a broadening of the water peak during CA. In vivo 1 H MRS at 3 T can reliably quantify subtle metabolic brain changes previously deemed challenging to interrogate, including brain glucose concentrations even under hypoglycemic conditions, ATP usage via the conversion of PCr to Cr, and differential changes in Glu and Gln. Observed metabolic changes during CPB surgery of a neonatal porcine model provide new insights into possible mechanisms for prevention of neuronal injury.


Assuntos
Ponte Cardiopulmonar , Creatina , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Ponte Cardiopulmonar/métodos , Creatina/metabolismo , Glucose/metabolismo , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Hipoglicemiantes/metabolismo , Fosfocreatina/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Suínos
4.
Pflugers Arch ; 473(11): 1761-1773, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34415396

RESUMO

The role of pyruvate dehydrogenase in mediating lipid-induced insulin resistance stands as a central question in the pathogenesis of type 2 diabetes mellitus. Many researchers have invoked the Randle hypothesis to explain the reduced glucose disposal in skeletal muscle by envisioning an elevated acetyl CoA pool arising from increased oxidation of fatty acids. Over the years, in vivo NMR studies have challenged that monolithic view. The advent of the dissolution dynamic nuclear polarization NMR technique and a unique type 2 diabetic rat model provides an opportunity to clarify. Dynamic nuclear polarization enhances dramatically the NMR signal sensitivity and allows the measurement of metabolic kinetics in vivo. Diabetic muscle has much lower pyruvate dehydrogenase activity than control muscle, as evidenced in the conversion of [1-13C]lactate and [2-13C]pyruvate to HCO3- and acetyl carnitine. The pyruvate dehydrogenase kinase inhibitor, dichloroacetate, restores rapidly the diabetic pyruvate dehydrogenase activity to control level. However, diabetic muscle has a much larger dynamic change in pyruvate dehydrogenase flux than control. The dichloroacetate-induced surge in pyruvate dehydrogenase activity produces a differential amount of acetyl carnitine but does not affect the tricarboxylic acid flux. Further studies can now proceed with the dynamic nuclear polarization approach and a unique rat model to interrogate closely the biochemical mechanism interfacing oxidative metabolism with insulin resistance and metabolic inflexibility.


Assuntos
Acetilcoenzima A/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Músculo Esquelético/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Complexo Piruvato Desidrogenase/metabolismo , Ácido Pirúvico/metabolismo , Animais , Ácidos Graxos/metabolismo , Glucose/metabolismo , Resistência à Insulina/fisiologia , Espectroscopia de Ressonância Magnética/métodos , Miocárdio/metabolismo , Oxirredução , Oxirredutases/metabolismo , Ratos , Ratos Sprague-Dawley
5.
Front Psychiatry ; 12: 642976, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33935833

RESUMO

Animal models of stress and related conditions, including depression, have shown that elevated peripheral levels of inflammatory cytokines have downstream consequences on glutamate (Glu) in the brain. Although studies in human adults with depression have reported evidence of higher inflammation but lower Glu in the anterior cingulate cortex (ACC), the extent to which peripheral inflammation contributes to glutamatergic abnormalities in adolescents with depression is not well-understood. It is also unclear whether antioxidants, such as ascorbate (Asc), may buffer against the effects of inflammation on Glu metabolism. Fifty-five depressed adolescents were recruited in the present cross-sectional study and provided blood samples, from which we assayed pro-inflammatory cytokines, and underwent a short-TE proton magnetic spectroscopy scan at 3T, from which we estimated Glu and Asc in the dorsal ACC. In the 31 adolescents with usable cytokine and Glu data, we found that IL-6 was significantly positively associated with dorsal ACC Glu (ß = 0.466 ± 0.199, p = 0.029). Of the 16 participants who had usable Asc data, we found that at higher levels of dorsal ACC Asc, there was a negative association between IL-6 and Glu (interaction effect: ß = -0.906 ± 0.433, p = 0.034). Importantly, these results remained significant when controlling for age, gender, percentage of gray matter in the dorsal ACC voxel, BMI, and medication (antidepressant and anti-inflammatory) usage. While preliminary, our results underscore the importance of examining both immune and neural contributors to depression and highlight the potential role of anti-inflammatory compounds in mitigating the adverse effects of inflammation (e.g., glutamatergic neuroexcitotoxicity). Future studies that experimentally manipulate levels of inflammation, and of ascorbate, and that characterize these effects on cortical glutamate concentrations and subsequent behavior in animals and in humans are needed.

6.
NMR Biomed ; 34(5): e4459, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33327042

RESUMO

The neurochemical information provided by proton magnetic resonance spectroscopy (MRS) or MR spectroscopic imaging (MRSI) can be severely compromised if strong signals originating from brain water and extracranial lipids are not properly suppressed. The authors of this paper present an overview of advanced water/lipid-suppression techniques and describe their advantages and disadvantages. Moreover, they provide recommendations for choosing the most appropriate techniques for proper use. Methods of water signal handling are primarily focused on the VAPOR technique and on MRS without water suppression (metabolite cycling). The section on lipid-suppression methods in MRSI is divided into three parts. First, lipid-suppression techniques that can be implemented on most clinical MR scanners (volume preselection, outer-volume suppression, selective lipid suppression) are described. Second, lipid-suppression techniques utilizing the combination of k-space filtering, high spatial resolutions and lipid regularization are presented. Finally, three promising new lipid-suppression techniques, which require special hardware (a multi-channel transmit system for dynamic B1+ shimming, a dedicated second-order gradient system or an outer volume crusher coil) are introduced.


Assuntos
Encéfalo/diagnóstico por imagem , Consenso , Lipídeos/química , Imageamento por Ressonância Magnética , Espectroscopia de Prótons por Ressonância Magnética , Água/química , Prova Pericial , Humanos , Metaboloma , Ondas de Rádio , Processamento de Sinais Assistido por Computador
7.
Front Hum Neurosci ; 14: 585512, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192421

RESUMO

This article provides an overview of the study protocol for the Teen Inflammation Glutamate Emotion Research (TIGER) project, a longitudinal study in which we plan to recruit 60 depressed adolescents (ages 13-18 years) and 30 psychiatrically healthy controls in order to examine the inflammatory and glutamatergic pathways that contribute to the recurrence of depression in adolescents. TIGER is the first study to examine the effects of peripheral inflammation on neurodevelopmental trajectories by assessing changes in cortical glutamate in depressed adolescents. Here, we describe the scientific rationale, design, and methods for the TIGER project. This article is intended to serve as an introduction to this project and to provide details for investigators who may be seeking to replicate or extend these methods for other related research endeavors.

8.
Front Mol Neurosci ; 13: 612685, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33390902

RESUMO

Fragile X syndrome (FXS) is the leading monogenetic cause of autism spectrum disorder and inherited cause of intellectual disability that affects approximately one in 7,000 males and one in 11,000 females. In FXS, the Fmr1 gene is silenced and prevents the expression of the fragile X mental retardation protein (FMRP) that directly targets mRNA transcripts of multiple GABAA subunits. Therefore, FMRP loss adversely impacts the neuronal firing of the GABAergic system which creates an imbalance in the excitatory/inhibitory ratio within the brain. Current FXS treatment strategies focus on curing symptoms, such as anxiety or decreased social function. While treating symptoms can be helpful, incorporating non-invasive imaging to evaluate how treatments change the brain's biology may explain what molecular aberrations are associated with disease pathology. Thus, the GABAergic system is suitable to explore developing novel therapeutic strategies for FXS. To understand how the GABAergic system may be affected by this loss-of-function mutation, GABA concentrations were examined within the frontal cortex and thalamus of 5-day-old wild type and Fmr1 knockout mice using both 1H magnetic resonance imaging (1H-MRS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Our objective was to develop a reliable scanning method for neonatal mice in vivo and evaluate whether 1H-MRS is suitable to capture regional GABA concentration differences at the front end of the critical cortical period where abnormal neurodevelopment occurs due to FMRP loss is first detected. 1H-MRS quantified GABA concentrations in both frontal cortex and thalamus of wild type and Fmr1 knockout mice. To substantiate the results of our 1H-MRS studies, in vitro LC-MS/MS was also performed on brain homogenates from age-matched mice. We found significant changes in GABA concentration between the frontal cortex and thalamus within each mouse from both wild type and Fmr1 knockout mice using 1H-MRS and LC-MS/MS. Significant GABA levels were also detected in these same regions between wild type and Fmr1 knockout mice by LC-MS/MS, validating that FMRP loss directly affects the GABAergic system. Thus, these new findings support the need to develop an effective non-invasive imaging method to monitor novel GABAergic strategies aimed at treating patients with FXS.

9.
PLoS One ; 14(12): e0225313, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31830049

RESUMO

BACKGROUND: Metabolism in tumor shifts from oxidative phosphorylation to inefficient glycolysis resulting in overproduction of lactate (Warburg effect), and cancers may be effectively treated if this imbalance were corrected. The aim of this longitudinal study of glioblastoma in a rat model was to determine whether the ratio of lactate (surrogate marker for glycolysis) to bicarbonate (for oxidative phosphorylation), as measured via in vivo magnetic resonance imaging of hyperpolarized 13C-labeled pyruvate accurately predicts survival. METHODS: C6 Glioma implanted male Wistar rats (N = 26) were treated with an anti-vascular endothelial growth factor antibody B20.4.1.1 in a preliminary study to assess the efficacy of the drug. In a subsequent longitudinal survival study, magnetic resonance spectroscopic imaging (MRSI) was used to estimate [1-13C]Lactate and [1-13C]Bicarbonate in tumor and contralateral normal appearing brain of glioma implanted rats (N = 13) after injection of hyperpolarized [1-13C]Pyruvate at baseline and 48 hours post-treatment with B20.4.1.1. RESULTS: A survival of ~25% of B20.4.1.1 treated rats was noted in the preliminary study. In the longitudinal imaging experiment, changes in 13C Lactate, 13C Bicarbonate and tumor size measured at baseline and 48 hours post-treatment did not correlate with survival. 13C Lactate to 13C Bicarbonate ratio increased in all the 6 animals that succumbed to the tumor whereas the ratio decreased in 6 of the 7 animals that survived past the 70-day observation period. CONCLUSIONS: 13C Lactate to 13C Bicarbonate ratio (Lac/Bic) at 48 hours post-treatment is highly predictive of survival (p = 0.003). These results suggest a potential role for the 13C Lac/Bic ratio serving as a valuable measure of tumor metabolism and predicting therapeutic response.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Bicarbonatos/metabolismo , Neoplasias Encefálicas/metabolismo , Encéfalo/metabolismo , Glioma/metabolismo , Ácido Láctico/metabolismo , Animais , Biomarcadores/metabolismo , Encéfalo/diagnóstico por imagem , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Glioma/diagnóstico por imagem , Glioma/tratamento farmacológico , Glicólise , Espectroscopia de Ressonância Magnética , Masculino , Transplante de Neoplasias , Fosforilação Oxidativa , Prognóstico , Ratos , Ratos Wistar , Taxa de Sobrevida , Resultado do Tratamento , Fator A de Crescimento do Endotélio Vascular/imunologia
10.
Psychiatry Res ; 275: 78-85, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30884334

RESUMO

Findings from in vivo brain proton magnetic resonance spectroscopy (1H MRS) and preclinical studies have suggested region- and medication status-dependent increases in glutamate (Glu) levels and deficiencies in glutathione (GSH) levels in schizophrenia. N-acetylcysteine (NAC), a GSH synthesis precursor, has demonstrated modest clinical benefit in schizophrenia. The objective of this study was to examine the effects of acute administration of NAC on GSH and Glu levels measured with 1H MRS in 19 patients with schizophrenia and 20 healthy control subjects. Levels of GSH were acquired in dorsal anterior cingulate cortex (dACC), and those of Glu in dACC and medial prefrontal cortex (mPFC), at baseline and 60 min following acute oral administration of 2400 mg of NAC. No differences in the levels of GSH or Glu were found at baseline or following NAC administration between patients with schizophrenia and control subjects in either of the targeted brain regions. Future studies measuring GSH levels in brain regions previously found to exhibit glutamatergic abnormalities or using genetic polymorphisms, while controlling for the age and medication status of the cohorts, are warranted to better identify groups of patients more likely to respond to NAC and its mode of action and mechanisms.


Assuntos
Acetilcisteína/farmacologia , Sequestradores de Radicais Livres/farmacologia , Ácido Glutâmico/metabolismo , Glutationa/metabolismo , Giro do Cíngulo/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Esquizofrenia/tratamento farmacológico , Acetilcisteína/administração & dosagem , Adolescente , Adulto , Feminino , Sequestradores de Radicais Livres/administração & dosagem , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Esquizofrenia/metabolismo , Adulto Jovem
11.
Mol Imaging Biol ; 21(5): 861-870, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30793241

RESUMO

PURPOSE: To assess whether simultaneous hyperpolarized C-13 magnetic resonance spectroscopy (MRS)/positron emission tomography (PET)/multiparametric magnetic resonance (mpMR) imaging is feasible in an orthotopic canine prostate cancer (PCa) model using a clinical PET/MR system and whether the combined imaging datasets can be fused with transrectal ultrasound (TRUS) in real time for multimodal image fusion-guided targeted biopsy of PCa. PROCEDURES: Institutional Animal Care and Use Committee approval was obtained for this study. Canine prostate adenocarcinoma (Ace-1) cells were orthotopically injected into the prostate of four dogs. Once tumor engraftment was confirmed by TRUS, simultaneous hyperpolarized C-13 MRS of [1-13C]pyruvate, PET (2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG), [68Ga]NODAGA-SCH1), and mpMR (T2W, DWI) imaging was performed using a clinical PET/MR system. Multimodality imaging data sets were then fused with TRUS and image-guided targeted biopsy was performed. Imaging results were then correlated with histological findings. RESULTS: Successful tumor engraftment was histologically confirmed in three of the four dogs (dogs 2, 3, and 4) and simultaneous C-13 MRS/PET/mpMR was feasible in all three. In dog 2, C-13 MRS showed increased lactate signal in the tumor (lactate/totalC = 0.47) whereas mpMR did not show any signal changes. In dog 3, [18F]FDG-PET (SUVmean = 1.90) and C-13 MRS (lactate/totalC = 0.59) showed elevated metabolic activity in the tumor. In dog 4, [18F]FDG (SUVmean = 2.43), [68Ga]NODAGA-SCH1 (SUVmean = 0.75), and C-13 MRS (Lac/totalC = 0.53) showed elevated uptake in tumor compared to control tissue and multimodal image fusion-guided biopsy of the tumor was successfully performed. CONCLUSION: Simultaneous C-13 MRS/PET/mpMR imaging and multimodal image fusion-guided biopsy is feasible in a canine PCa model.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Biópsia Guiada por Imagem , Imagem Multimodal , Imageamento por Ressonância Magnética Multiparamétrica , Tomografia por Emissão de Pósitrons , Próstata/patologia , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/veterinária , Animais , Modelos Animais de Doenças , Cães , Processamento de Imagem Assistida por Computador , Masculino , Imagens de Fantasmas , Próstata/diagnóstico por imagem
12.
Neoplasia ; 21(1): 1-16, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30472500

RESUMO

This white paper discusses prospects for advancing hyperpolarization technology to better understand cancer metabolism, identify current obstacles to HP (hyperpolarized) 13C magnetic resonance imaging's (MRI's) widespread clinical use, and provide recommendations for overcoming them. Since the publication of the first NIH white paper on hyperpolarized 13C MRI in 2011, preclinical studies involving [1-13C]pyruvate as well a number of other 13C labeled metabolic substrates have demonstrated this technology's capacity to provide unique metabolic information. A dose-ranging study of HP [1-13C]pyruvate in patients with prostate cancer established safety and feasibility of this technique. Additional studies are ongoing in prostate, brain, breast, liver, cervical, and ovarian cancer. Technology for generating and delivering hyperpolarized agents has evolved, and new MR data acquisition sequences and improved MRI hardware have been developed. It will be important to continue investigation and development of existing and new probes in animal models. Improved polarization technology, efficient radiofrequency coils, and reliable pulse sequences are all important objectives to enable exploration of the technology in healthy control subjects and patient populations. It will be critical to determine how HP 13C MRI might fill existing needs in current clinical research and practice, and complement existing metabolic imaging modalities. Financial sponsorship and integration of academia, industry, and government efforts will be important factors in translating the technology for clinical research in oncology. This white paper is intended to provide recommendations with this goal in mind.


Assuntos
Isótopos de Carbono , Imageamento por Ressonância Magnética/métodos , Neoplasias/diagnóstico , Animais , Modelos Animais de Doenças , Humanos , Reprodutibilidade dos Testes , Pesquisa Translacional Biomédica
13.
Magn Reson Med ; 79(1): 41-47, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28370458

RESUMO

PURPOSE: The most common γ-aminobutyric-acid (GABA) editing approach, MEGA-PRESS, uses J-editing to measure GABA distinct from larger overlapping metabolites, but suffers contamination from coedited macromolecules (MMs) comprising 40 to 60% of the observed signal. MEGA-SPECIAL is an alternative method with better MM suppression, but is not widely used primarily because of its relatively poor spatial localization. Our goal was to develop an improved MM-suppressed GABA editing sequence at 3 Tesla. METHODS: We modified a single-voxel MEGA-SPECIAL sequence with an oscillating readout gradient for improved spatial localization, and used very selective 30-ms editing pulses for improved suppression of coedited MMs. RESULTS: Simulation and in vivo experiments confirmed excellent MM suppression, insensitive to the range of B0 frequency drifts typically encountered in vivo. Both intersubject and intrasubject studies showed that MMs, when suppressed by the improved MEGA-SPECIAL method, contributed approximately 40% to the corresponding MEGA-PRESS measurements. From the intersubject study, the coefficient of variation for GABA+/Cre (MEGA-PRESS) was 11.2% versus 7% for GABA/Cre (improved MEGA-SPECIAL), demonstrating significantly reduced variance (P = 0.005), likely coming from coedited MMs. CONCLUSIONS: This improved MEGA-SPECIAL sequence provides unbiased GABA measurements with reduced variance as compared with conventional MEGA-PRESS. This approach is also relatively insensitive to the range of B0 drifts typically observed in in vivo human studies. Magn Reson Med 79:41-47, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Espectroscopia de Ressonância Magnética/métodos , Ácido gama-Aminobutírico/química , Algoritmos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Simulação por Computador , Humanos , Substâncias Macromoleculares , Distribuição Normal , Oscilometria , Imagens de Fantasmas , Ondas de Rádio , Reprodutibilidade dos Testes
14.
Artigo em Inglês | MEDLINE | ID: mdl-28941767

RESUMO

Multiple lines of research have reported thalamic abnormalities in individuals with autism spectrum disorder (ASD) that are associated with social communication impairments (SCI), restricted and repetitive behaviors (RRB), or sensory processing abnormalities (SPA). Thus, the thalamus may represent a common neurobiological structure that is shared across symptom domains in ASD. Same-sex monozygotic (MZ) and dizygotic (DZ) twin pairs with and without ASD underwent cognitive/behavioral evaluation and magnetic resonance imaging to assess the thalamus. Neurometabolites were measured with 1H magnetic resonance spectroscopy (MRS) utilizing a multi-voxel PRESS sequence and were referenced to creatine+phosphocreatine (tCr). N-acetyl aspartate (NAA), a marker of neuronal integrity, was reduced in twins with ASD (n=47) compared to typically-developing (TD) controls (n=33), and this finding was confirmed in a sub-sample of co-twins discordant for ASD (n=11). NAA in the thalamus was correlated to a similar extent with SCI, RRB, and SPA, such that reduced neuronal integrity was associated with greater symptom severity. Glutamate+glutamine (Glx) was also reduced in affected versus unaffected co-twins. Additionally, NAA and Glx appeared to be primarily genetically-mediated, based on comparisons between MZ and DZ twin pairs. Thus, thalamic abnormalities may be influenced by genetic susceptibility for ASD but are likely not domain-specific.


Assuntos
Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Tálamo/diagnóstico por imagem , Tálamo/metabolismo , Adolescente , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Transtorno do Espectro Autista/genética , Criança , Estudos de Coortes , Doenças em Gêmeos , Feminino , Lateralidade Funcional , Humanos , Imageamento por Ressonância Magnética , Masculino , Testes Neuropsicológicos , Índice de Gravidade de Doença , Gêmeos Dizigóticos , Gêmeos Monozigóticos
15.
Oncotarget ; 8(53): 90959-90968, 2017 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-29207616

RESUMO

Cancer metabolism has emerged as an increasingly attractive target for interfering with tumor growth. Small molecule activators of pyruvate kinase isozyme M2 (PKM2) suppress tumor formation but have an unknown effect on established tumors. We demonstrate that TEPP-46, a PKM2 activator, results in increased glucose consumption, providing the rationale for combining PKM2 activators with the toxic glucose analog, 2-deoxy-D-glucose (2-DG). Combination treatment resulted in reduced viability of a range of cell lines in standard cell culture conditions at concentrations of drugs that had no effect when used alone. This effect was replicated in vivo on established subcutaneous tumors. We further demonstrated the ability to detect acute metabolic differences in combination treatment using hyperpolarized magnetic resonance spectroscopy (MRS). Combination treated tumors displayed a higher pyruvate to lactate 13C-label exchange 2 hr post-treatment. This ability to assess the effect of drugs non-invasively may accelerate the implementation and clinical translation of drugs that target cancer metabolism.

16.
J Am Chem Soc ; 139(19): 6629-6634, 2017 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-28467066

RESUMO

Hyperpolarized 13C magnetic resonance spectroscopy (MRS) provides unprecedented opportunities to obtain clinical diagnostic information through in vivo monitoring of metabolic pathways. The continuing advancement of this field relies on the identification of molecular probes that can effectively interrogate pathways critical to disease. In this report, we describe the synthesis, development, and in vivo application of sodium [1-13C]-glycerate ([13C]-Glyc) as a novel probe for evaluating glycolysis using hyperpolarized 13C MRS. This agent was prepared by a concise synthetic route and formulated for dynamic nuclear polarization. [13C]-Glyc displayed a high level of polarization and long spin-lattice relaxation time-both of which are necessary for future clinical investigations. In vivo spectroscopic studies with hyperpolarized [13C]-Glyc in rat liver furnished metabolic products, [13C]-labeled pyruvate and lactate, originating from glycolysis. The levels of production and relative intensities of these metabolites were directly correlated with the induced glycolytic state (fasted versus fed groups). This work establishes hyperpolarized [13C]-Glyc as a novel agent for clinically relevant 13C MRS studies of energy metabolism and further provides opportunities for evaluating intracellular redox states in biochemical investigations.


Assuntos
Ácidos Glicéricos/metabolismo , Glicólise , Sondas Moleculares/metabolismo , Sódio/metabolismo , Animais , Isótopos de Carbono , Ácidos Glicéricos/química , Masculino , Sondas Moleculares/química , Estrutura Molecular , Ratos , Ratos Wistar , Sódio/química
17.
ACS Chem Biol ; 12(7): 1737-1742, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28452454

RESUMO

Reactive oxygen species (ROS) are essential cellular metabolites widely implicated in many diseases including cancer, inflammation, and cardiovascular and neurodegenerative disorders. Yet, ROS signaling remains poorly understood, and their measurements are a challenge due to high reactivity and instability. Here, we report the development of 13C-thiourea as a probe to detect and measure H2O2 dynamics with high sensitivity and spatiotemporal resolution using hyperpolarized 13C magnetic resonance spectroscopic imaging. In particular, we show 13C-thiourea to be highly polarizable and to possess a long spin-lattice relaxation time (T1), which enables real-time monitoring of ROS-mediated transformation. We also demonstrate that 13C-thiourea reacts readily with H2O2 to give chemically distinguishable products in vitro and validate their detection in vivo in a mouse liver. This study suggests that 13C-thiourea is a promising agent for noninvasive detection of H2O2 in vivo. More broadly, our findings outline a viable clinical application for H2O2 detection in patients with a range of diseases.


Assuntos
Peróxido de Hidrogênio/análise , Tioureia/química , Animais , Isótopos de Carbono/análise , DNA/química , Lipídeos/química , Fígado/metabolismo , Imageamento por Ressonância Magnética , Camundongos , Estresse Oxidativo , Proteínas/química , Espécies Reativas de Oxigênio , Análise Espectral , Tioureia/metabolismo
18.
Magn Reson Med ; 77(5): 1741-1748, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28261868

RESUMO

PURPOSE: The intracellular lactate to pyruvate concentration ratio is a commonly used tissue assay biomarker of redox, being proportional to free cytosolic [NADH]/[NAD+ ]. In this study, we assessed the use of hyperpolarized [1-13 C]alanine and the subsequent detection of the intracellular products of [1-13 C]pyruvate and [1-13 C]lactate as a useful substrate for assessing redox levels in the liver in vivo. METHODS: Animal experiments were conducted to measure in vivo metabolism at baseline and after ethanol infusion. A solution of 80-mM hyperpolarized [1-13 C]alanine was injected intravenously at baseline (n = 8) and 45 min after ethanol infusion (n = 4), immediately followed by the dynamic acquisition of 13 C MRS spectra. RESULTS: In vivo rat liver spectra showed peaks from [1-13 C] alanine and the products of [1-13 C]lactate, [1-13 C]pyruvate, and 13 C-bicarbonate. A significantly increased 13 C-lactate/13 C-pyruvate ratio was observed after ethanol infusion (8.46 ± 0.58 at baseline versus 13.58 ± 0.69 after ethanol infusion; P < 0.001) consistent with the increased NADH produced by liver metabolism of ethanol to acetaldehyde and then acetate. A decrease in 13 C-bicarbonate production was also noted, potentially reflecting ethanol-induced mitochondrial redox changes. CONCLUSION: A method to measure in vivo tissue redox using hyperpolarized [1-13 C]alanine is presented, with the validity of the proposed 13 C-pyruvate/13 C-lactate metric tested using an ethanol challenge to alter liver redox state. Magn Reson Med 77:1741-1748, 2017. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Alanina/química , Isótopos de Carbono/química , Fígado/diagnóstico por imagem , Fígado/fisiologia , Oxirredução , Animais , Citosol/metabolismo , Etanol/química , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Masculino , Mitocôndrias/metabolismo , Oxigênio/química , Tomografia por Emissão de Pósitrons , Ácido Pirúvico/química , Ratos , Ratos Wistar , Reprodutibilidade dos Testes
19.
NMR Biomed ; 30(2)2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28004867

RESUMO

Hyperpolarized 13 C MRS allows in vivo interrogation of key metabolic pathways, with pyruvate (Pyr) the substrate of choice for current clinical studies. Knowledge of the liquid-state polarization is needed for full quantitation, and asymmetry of the C2 doublet, arising from 1% naturally abundant [1,2-13 C]Pyr in any hyperpolarized [1-13 C]Pyr sample, has been suggested as a direct measure of in vivo C1 polarization via the use of an in vitro calibration curve. Here we show that different polarization levels can yield the same C2 -doublet asymmetry, thus limiting the utility of this metric for quantitation. Furthermore, although the time evolution of doublet asymmetry is poorly modeled using the expected dominant relaxation mechanisms of carbon-proton dipolar coupling and chemical shift anisotropy, the inclusion of a C-C dipolar coupling term can explain the observed initial evolution of the C2 doublet asymmetry beyond its expected thermal equilibrium value.


Assuntos
Algoritmos , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Modelos Químicos , Ácido Pirúvico/análise , Ácido Pirúvico/química , Processamento de Sinais Assistido por Computador , Simulação por Computador , Imagem Molecular/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
20.
NMR Biomed ; 29(5): 650-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26990457

RESUMO

Hyperpolarized [1-(13)C]pyruvate MRS provides a unique imaging opportunity to study the reaction kinetics and enzyme activities of in vivo metabolism because of its favorable imaging characteristics and critical position in the cellular metabolic pathway, where it can either be reduced to lactate (reflecting glycolysis) or converted to acetyl-coenzyme A and bicarbonate (reflecting oxidative phosphorylation). Cancer tissue metabolism is altered in such a way as to result in a relative preponderance of glycolysis relative to oxidative phosphorylation (i.e. Warburg effect). Although there is a strong theoretical basis for presuming that readjustment of the metabolic balance towards normal could alter tumor growth, a robust noninvasive in vivo tool with which to measure the balance between these two metabolic processes has yet to be developed. Until recently, hyperpolarized (13)C-pyruvate imaging studies had focused solely on [1-(13)C]lactate production because of its strong signal. However, without a concomitant measure of pyruvate entry into the mitochondria, the lactate signal provides no information on the balance between the glycolytic and oxidative metabolic pathways. Consistent measurement of (13)C-bicarbonate in cancer tissue, which does provide such information, has proven difficult, however. In this study, we report the reliable measurement of (13)C-bicarbonate production in both the healthy brain and a highly glycolytic experimental glioblastoma model using an optimized (13)C MRS imaging protocol. With the capacity to obtain signal in all tumors, we also confirm for the first time that the ratio of (13)C-lactate to (13)C-bicarbonate provides a more robust metric relative to (13)C-lactate for the assessment of the metabolic effects of anti-angiogenic therapy. Our data suggest a potential application of this ratio as an early biomarker to assess therapeutic effectiveness. Furthermore, although further study is needed, the results suggest that anti-angiogenic treatment results in a rapid normalization in the relative tissue utilization of glycolytic and oxidative phosphorylation by tumor tissue.


Assuntos
Bicarbonatos/metabolismo , Biomarcadores Tumorais/metabolismo , Ácido Láctico/metabolismo , Imageamento por Ressonância Magnética/métodos , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Isótopos de Carbono , Contagem de Células , Proliferação de Células , Metabolismo Energético , Glioma/metabolismo , Glioma/patologia , Masculino , Metaboloma , Ratos Wistar , Carga Tumoral , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA