Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(24): 29535-29541, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37278556

RESUMO

The wide band gap semiconductor κ-Ga2O3 and its aluminum and indium alloys have been proposed as promising materials for many applications. One of them is the use of inter-sub-band transitions in quantum-well (QW) systems for infrared detectors. Our simulations show that the detection wavelength range of nowadays state of the art GaAs/AlxGa1-xAs quantum-well infrared photodetectors (QWIPs) could be substantially excelled with about 1-100 µm using κ-([Al,In]xGa1-x)2O3, while at the same time being transparent to visible light and therefore insensitive to photon noise due to its wide band gap, demonstrating the application potential of this material system. Our simulations further show that the QWIPs efficiency critically depends on the QW thickness, making a precise control over the thickness during growth and a reliable thickness determination essential. We demonstrate that pulsed laser deposition yields the needed accuracy, by analyzing a series of (InxGa1-x)2O3 QWs with (AlyGa1-y)2O3 barriers with high-resolution X-ray diffraction, X-ray photoelectron spectroscopy (XPS) depth profiling, and transmission electron microscopy (TEM). While the superlattice fringes of high-resolution X-ray diffraction only yield an average combined thickness of the QWs and the barrier and X-ray spectroscopy depth profiling requires elaborated modeling of the XPS signal to accurately determine the thickness of such QWs, TEM is the method of choice when it comes to the determination of QW thicknesses.

2.
J Phys Chem Lett ; 14(26): 6163-6169, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37377196

RESUMO

Amorphous transparent conductors (a-TCs) are key materials for flexible and transparent electronics but still suffer from poor p-type conductivity. By developing an amorphous Cu(S,I) material system, record high hole conductivities of 103-104 S cm-1 have been achieved in p-type a-TCs. These high conductivities are comparable with commercial n-type TCs made of indium tin oxide and are 100 times greater than any previously reported p-type a-TCs. Responsible for the high hole conduction is the overlap of large p-orbitals of I- and S2- anions, which provide a hole transport pathway insensitive to structural disorder. In addition, the bandgap of amorphous Cu(S,I) can be modulated from 2.6 to 2.9 eV by increasing the iodine content. These unique properties demonstrate that the Cu(S,I) system holds great potential as a promising p-type amorphous transparent electrode material for optoelectronics.

3.
Nat Commun ; 11(1): 5092, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33037193

RESUMO

The combination of inorganic semiconductors with organic thin films promises new strategies for the realization of complex hybrid optoelectronic devices. Oxidative chemical vapor deposition (oCVD) of conductive polymers offers a flexible and scalable path towards high-quality three-dimensional inorganic/organic optoelectronic structures. Here, hole-conductive poly(3,4-ethylenedioxythiophene) (PEDOT) grown by oxidative chemical vapor deposition is used to fabricate transparent and conformal wrap-around p-type contacts on three-dimensional microLEDs with large aspect ratios, a yet unsolved challenge in three-dimensional gallium nitride technology. The electrical characteristics of two-dimensional reference structures confirm the quasi-metallic state of the polymer, show high rectification ratios, and exhibit excellent thermal and temporal stability. We analyze the electroluminescence from a three-dimensional hybrid microrod/polymer LED array and demonstrate its improved optical properties compared with a purely inorganic microrod LED. The findings highlight a way towards the fabrication of hybrid three-dimensional optoelectronics on the sub-micron scale.

4.
ACS Appl Mater Interfaces ; 12(7): 8879-8885, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-31977187

RESUMO

Conduction and valence band offsets are among the most crucial material parameters for semiconductor heterostructure device design, such as for high-electron mobility transistors or quantum well infrared photodetectors (QWIP). Because of its expected high spontaneous electrical polarization and the possibility of polarization doping at heterointerfaces similar to the AlGaN/InGaN/GaN system, the metastable orthorhombic κ-phase of Ga2O3 and its indium and aluminum alloy systems are a promising alternative for such device applications. However, respective band offsets to any dielectric are unknown, as well as the evolution of the bands within the alloy systems. We report on the valence and conduction band offsets of orthorhombic κ-(AlxGa1-x)2O3 and κ-(InxGa1-x)2O3 thin films to MgO as reference dielectric by X-ray photoelectron spectroscopy. The thin films with compositions xIn ≤ 0.27 and xAl ≤ 0.55 were grown by pulsed laser deposition utilizing tin-doped and radially segmented targets. The determined band alignments reveal the formation of a type I heterojunction to MgO for all compositions with conduction band offsets of at least 1.4 eV, providing excellent electron confinement. Only low valence band offsets with a maximum of ∼300 meV were observed. Nevertheless, this renders MgO as a promising gate dielectric for metal-oxide-semiconductor transistors in the orthorhombic modification. We further found that the conduction band offsets in the alloy systems are mainly determined by the evolution of the band gaps, which can be tuned by the composition in a wide range between 4.1 and 6.2 eV, because the energy position of the valence band maximum remains almost constant over the complete composition range investigated. Therefore, tunable conduction band offsets of up to 1.1 eV within the alloy systems allow for subniveau transition energies in (AlxGa1-x)2O3/(InxGa1-x)2O3/(AlxGa1-x)2O3 quantum wells from the infrared to the visible regime, which are promising for application in QWIPs.

5.
ACS Appl Mater Interfaces ; 11(30): 27073-27087, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31269791

RESUMO

Preparation of rectifying Schottky contacts on n-type oxide semiconductors, such as indium oxide (In2O3), is often challenged by the presence of a distinct surface electron accumulation layer. We investigated the material properties and electrical transport characteristics of platinum contact/indium oxide heterojunctions to define routines for the preparation of high-performance Schottky diodes on n-type oxide semiconductors. Combining the evaluation of different Pt deposition methods, such as electron-beam evaporation and (reactive) sputtering in an (O and) Ar atmosphere, with oxygen plasma interface treatments, we identify key parameters to obtain Schottky-type contacts with high electronic barrier height and high rectification ratio. Different photoelectron spectroscopy approaches are compared to characterize the chemical properties of the contact layers and the interface region toward In2O3, to analyze charge transfer and plasma oxidation processes as well as to evaluate the precision and limits of different methodologies to determine heterointerface energy barriers. An oxygen-plasma-induced passivation of the semiconductor surface, which induces electron depletion and generates an intrinsic interface energy barrier, is found to be not sufficient to generate rectifying platinum contacts. The dissolution of the functional interface oxide layer within the Pt film results in an energy barrier of ∼0.5 eV, which is too low for an In2O3 electron concentration of ∼1018 cm-3. A reactive sputter process in an Ar and O atmosphere is required to fabricate rectifying contacts that are composed of platinum oxide (PtOx). Combining oxygen plasma interface oxidation of the semiconductor surface with reactive sputtering of PtOx layers results in the generation of a high Schottky barrier of ∼0.9 eV and a rectification ratio of up to 106. An additional oxygen plasma treatment after contact deposition further reduced the reverse leakage current, likely by eliminating a surface conduction path between the coplanar Ohmic and Schottky contacts. We conclude that processes that allow us to increase the oxygen content in the interface and contact region are essential for fabrication of device-quality-rectifying contacts on various oxide semiconductors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA