Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
3D Print Addit Manuf ; 11(2): e828-e838, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38689932

RESUMO

Resistive heating elements can be of particular interest for many applications, such as e-skin. In this study, soft heating elements were developed by combining thermoplastic polyurethane (TPU) with carbon black. In contrast to previous studies on thermoplastic polymer-based thermistors, the heating elements could endure elongations above 100%. Due to the high melting point of the TPU and the carbon filler, the thermistors could be heated up to 180°C without significant deformation. The heating elements were extruded on TPU substrates using material extrusion additive manufacturing in one-step process. Self-regulating behavior to control the maximum temperature was achieved with the application of two different voltages (20 and 25 V) and different current thresholds, between 100 and 800 mA. The heating performance was adjusted by changing the geometry of the sensing elements; an increase in cross section resulted in a lower current density and lower temperature. For the heating elements, variation of the additive manufacturing parameters such as offset, layer height, nozzle speed, and extrusion multiplier resulted in a different width/height aspect ratio of the cross section of the extruded lines, affecting the initial resistivity of the thermistor. Orientation of the carbon filler during extrusion process is one reason for the small change of the longitudinal conductivity of the heating elements. The resulting skin with the integrated heating elements allowed the possibility to perform the in situ heating for the localized healing of structural damage, while maintaining the softness required for the application of soft robotic electronic skin.

2.
Small Methods ; : e2301247, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38183406

RESUMO

Additive microfabrication processes based on localized electroplating enable the one-step deposition of micro-scale metal structures with outstanding performance, e.g., high electrical conductivity and mechanical strength. They are therefore evaluated as an exciting and enabling addition to the existing repertoire of microfabrication technologies. Yet, electrochemical processes are generally restricted to conductive or semiconductive substrates, precluding their application in the manufacturing of functional electric devices where direct deposition onto insulators is often required. Here, the direct, localized electrodeposition of copper on a variety of insulating substrates, namely Al2 O3 , glass and flexible polyethylene, is demonstrated, enabled by electron-beam-induced reduction in a highly confined liquid electrolyte reservoir. The nanometer-size of the electrolyte reservoir, fed by electrohydrodynamic ejection, enables a minimal feature size on the order of 200 nm. The fact that the transient reservoir is established and stabilized by electrohydrodynamic ejection rather than specialized liquid cells can offer greater flexibility toward deposition on arbitrary substrate geometries and materials. Installed in a low-vacuum scanning electron microscope, the setup further allows for operando, nanoscale observation and analysis of the manufacturing process.

3.
ACS Appl Mater Interfaces ; 16(1): 1283-1292, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38157367

RESUMO

Electrohydrodynamic 3D printing is an additive manufacturing technique with enormous potential in plasmonics, microelectronics, and sensing applications thanks to its broad material palette, high voxel deposition rate, and compatibility with various substrates. However, the electric field used to deposit material is concentrated at the depositing structure, resulting in the focusing of the charged droplets and geometry-dependent landing positions, which complicates the fabrication of complex 3D shapes. The low level of concordance between the design and printout seriously impedes the development of electrohydrodynamic 3D printing and rationalizes the simplicity of the designs reported so far. In this work, we break the electric field centrosymmetry to study the resulting deviation in the flight trajectory of the droplets. Comparison of experimental outcomes with predictions of an FEM model provides new insights into the droplet characteristics and unveils how the product of droplet size and charge uniquely governs its kinematics. From these insights, we develop reliable predictions of the jet trajectory and allow the computation of optimized printing paths counterbalancing the electric field distortion, thereby enabling the fabrication of geometries with unprecedented complexity.

4.
RSC Adv ; 13(20): 13575-13585, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37152573

RESUMO

As the microelectronics field pushes to increase device density through downscaling component dimensions, various novel micro- and nano-scale additive manufacturing technologies have emerged to expand the small scale design space. These techniques offer unprecedented freedom in designing 3D circuitry but have not yet delivered device-grade materials. To highlight the complex role of processing on the quality and microstructure of AM metals, we report the electrical properties of micrometer-scale copper interconnects fabricated by Fluid Force Microscopy (FluidFM) and Electrohydrodynamic-Redox Printing (EHD-RP). Using a thin film-based 4-terminal testing chip developed for the scope of this study, the electrical resistance of as-printed metals is directly related to print strategies and the specific morphological and microstructural features. Notably, the chip requires direct synthesis of conductive structures on an insulating substrate, which is shown for the first time in the case of FluidFM. Finally, we demonstrate the unique ability of EHD-RP to tune the materials resistivity by one order of magnitude solely through printing voltage. Through its novel electrical characterization approach, this study offers unique insight into the electrical properties of micro- and submicrometer-sized copper interconnects and steps towards a deeper understanding of micro AM metal properties for advanced electronics applications.

5.
Small ; 18(51): e2205302, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36328737

RESUMO

The control of materials' microstructure is both a necessity and an opportunity for micro/nanometer-scale additive manufacturing technologies. On the one hand, optimization of purity and defect density of printed metals is a prerequisite for their application in microfabrication. On the other hand, the additive approach to materials deposition with highest spatial resolution offers unique opportunities for the fabrication of materials with complex, 3D graded composition or microstructure. As a first step toward both-optimization of properties and site-specific tuning of microstructure-an overview of the wide range of microstructure accessed in pure copper (up to >99.9 at.%) by electrohydrodynamic redox 3D printing is presented, and on-the-fly modulation of grain size in copper with smallest segments ≈400 nm in length is shown. Control of microstructure and materials properties by in situ adjustment of the printing voltage is demonstrated by variation of grain size by one order of magnitude and corresponding compression strength by a factor of two. Based on transmission electron microscopy and atom probe tomography, it is suggested that the small grain size is a direct consequence of intermittent solvent drying at the growth interface at low printing voltages, while larger grains are enabled by the permanent presence of solvent at higher potentials.


Assuntos
Cobre , Nanoestruturas , Impressão Tridimensional , Oxirredução , Solventes
6.
Nanoscale ; 14(46): 17418-17427, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36385575

RESUMO

Electrohydrodynamic redox 3D printing (EHD-RP) is an additive manufacturing (AM) technique with submicron resolution and multi-metal capabilities, offering the possibility to switch chemistry during deposition "on-the-fly". Despite the potential for synthesizing a large range of metals by electrochemical small-scale AM techniques, to date, only Cu and Ag have been reproducibly deposited by EHD-RP. Here, we extend the materials palette available to EHD-RP by using aqueous solvents instead of organic solvents, as used previously. We demonstrate deposition of Cu and Zn from sacrificial anodes immersed in acidic aqueous solvents. Mass spectrometry indicates that the choice of the solvent is important to the deposition of pure Zn. Additionally, we show that the deposited Zn structures, 250 nm in width, can be partially converted into semiconducting ZnO structures by oxidation at 325 °C in air.

7.
Nanoscale Adv ; 4(4): 1182-1190, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35308601

RESUMO

Regulating the state of the solid-liquid interface by means of electric fields is a powerful tool to control electrochemistry. In scanning probe systems, this can be confined closely to a scanning (nano)electrode by means of fast potential pulses, providing a way to probe the interface and control electrochemical reactions locally, as has been demonstrated in nanoscale electrochemical etching. For this purpose, it is important to know the spatial extent of the interaction between pulses applied to the tip, and the substrate. In this paper we use a framework of diffuse layer charging to describe the localization of electrical double layer charging in response to a potential pulse at the probe. Our findings are in good agreement with literature values obtained in electrochemical etching. We show that the pulse can be much more localized by limiting the diffusivity of the ions present in solution, by confined electrodeposition of cobalt in a dimethyl sulfoxide solution, using an electrochemical scanning tunnelling microscope. Finally, we demonstrate the deposition of cobalt nanostructures (<100 nm) using this method. The presented framework therefore provides a general route for predicting and controlling the time-dependent region of interaction between an electrochemical scanning probe and the surface.

8.
Nanoscale ; 14(14): 5579-5588, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35343988

RESUMO

To explore a minimal feature size of <100 nm with electrochemical additive manufacturing, we use a strategy originally applied to microscale electrochemical machining for the nanoscale deposition of Co on Au. The concept's essence is the localization of electrochemical reactions below a probe during polarization with ns-long voltage pulses. As shown, a confinement that exceeds that predicted by a simple model based on the time constant for one-dimensional double layer charging enables a feature size of <100 nm for 2D patterning. We further indirectly verify the potential for out-of-plane deposition by tracking growth curves of high-aspect-ratio deposits. Importantly, we report a lack of anodic stability of Au tips used for patterning. As an inert probe is the prerequisite for controlled structuring, we experimentally verify an increased resistance of Pt probes against degradation. Consequently, the developed setup and processes show a path towards reproducible direct 2D and 3D patterning of metals at the nanoscale.

9.
Small Methods ; 6(2): e2101084, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35174994

RESUMO

Correlated high-speed nanoindentation and energy-dispersive spectroscopy are applied in a combinatorial investigation of the Ni-Ta system. All seven phases in the system are clearly resolved in the resulting maps, and the mechanical properties and composition ranges for each phase are determined. Good agreement with ab initio calculations is generally observed with some exceptions, most notably NiTa2 . This is achieved using a simple correlation method utilizing directly overlaid data matrices to allow compositional labeling of mechanical data. This allows easy data segmentation without requiring complicated statistical deconvolution methods. Without this correlative method, phase deconvolution of the Ni-Ta system would be challenging due to several phases possessing adjacent compositions and mechanical properties. This demonstrates the potential of this new correlative approach for future investigations, particularly those involving complex microstructures and/or compositional variation.

10.
Nano Lett ; 22(2): 853-859, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-34738817

RESUMO

The design and fabrication of large-area metamaterials is an ongoing challenge. In the present work, we propose a scalable design route and low-footprint strategy for the production of large-area, frequency-selective Cu-Sn disordered network metamaterials with quasi-perfect absorption. The nanoscale networks combine the robustness of disordered systems with the broad-band optical response known from connected wire-mesh metamaterials. Using experiments and simulations, we show how frequency-selective absorption in the networks can be designed and controlled. We observe a linear dependence of the optical response as a function of Sn content ranging from the near-infrared to the visible region. The absorbing state exhibits strong sensitivity to both changes in the global network topology and the chemistry of the network. We probe the plasmonic response of these nanometric networks by electron energy loss spectroscopy (EELS), where we resolve extremely confined gap surface-plasmon (GSP) modes.

11.
Nanoscale ; 12(39): 20158-20164, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32776025

RESUMO

3D printing research targets the creation of nanostructures beyond the limits of traditional micromachining. A proper characterisation of their functionalities is necessary to facilitate future implementation into applications. We fabricate, in an open atmosphere, high-aspect-ratio gold nanowalls by electrohydrodynamic rapid nanodripping, and comprehensively analyse their electronic performance by four-point probe measurements. We reveal the large-grained nanowall morphology by transmission electron microscopy and explain the measured low resistivities approaching those of bulk gold. This work is a significant advancement in contactless bottom-up 3D nanofabrication and characterisation and could also serve as a platform for fundamental studies of additively manufactured high-aspect-ratio out-of-plane metallic nanostructures.

12.
Adv Funct Mater ; 30(28): 1910491, 2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32684902

RESUMO

Many emerging applications in microscale engineering rely on the fabrication of 3D architectures in inorganic materials. Small-scale additive manufacturing (AM) aspires to provide flexible and facile access to these geometries. Yet, the synthesis of device-grade inorganic materials is still a key challenge toward the implementation of AM in microfabrication. Here, a comprehensive overview of the microstructural and mechanical properties of metals fabricated by most state-of-the-art AM methods that offer a spatial resolution ≤10 µm is presented. Standardized sets of samples are studied by cross-sectional electron microscopy, nanoindentation, and microcompression. It is shown that current microscale AM techniques synthesize metals with a wide range of microstructures and elastic and plastic properties, including materials of dense and crystalline microstructure with excellent mechanical properties that compare well to those of thin-film nanocrystalline materials. The large variation in materials' performance can be related to the individual microstructure, which in turn is coupled to the various physico-chemical principles exploited by the different printing methods. The study provides practical guidelines for users of small-scale additive methods and establishes a baseline for the future optimization of the properties of printed metallic objects-a significant step toward the potential establishment of AM techniques in microfabrication.

13.
Nat Commun ; 11(1): 2681, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32471972

RESUMO

As the backbone material of the information age, silicon is extensively used as a functional semiconductor and structural material in microelectronics and microsystems. At ambient temperature, the brittleness of Si limits its mechanical application in devices. Here, we demonstrate that Si processed by modern lithography procedures exhibits an ultrahigh elastic strain limit, near ideal strength (shear strength ~4 GPa) and plastic deformation at the micron-scale, one order of magnitude larger than samples made using focused ion beams, due to superior surface quality. This extended elastic regime enables enhanced functional properties by allowing higher elastic strains to modify the band structure. Further, the micron-scale plasticity of Si allows the investigation of the intrinsic size effects and dislocation behavior in diamond-structured materials. This reveals a transition in deformation mechanisms from full to partial dislocations upon increasing specimen size at ambient temperature. This study demonstrates a surface engineering pathway for fabrication of more robust Si-based structures.

14.
ACS Appl Mater Interfaces ; 11(45): 42479-42485, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31682402

RESUMO

Thermal management is conventionally the design of microelectronics circuitry to maximize heat extraction and minimize local heating. In this work, we investigate a reverse thermal management problem related to understanding and preventing heat dissipation during the propagation of a self-sustained reaction in Ni/Al reactive multilayers, metastable nanostructures that can release heat through a self-sustained propagating exothermic reaction. While it was recently demonstrated that reactive multilayers can serve as on-chip heat sources for on-demand healing of metal films, they still face challenges of device integration due to conductive heat losses to the substrate or adjacent on-chip components, which act as heat sinks and consequently quench the reaction. Here, we study the impact of different heat sink materials, such as gold, copper, and silicon, on the propagation velocity and temperature of the self-sustained heat wave and show that the propagation can be controlled and even stopped by varying the heat sink thickness. Further, we demonstrate that the introduction of a multilayered Al2O3/Zr/Al2O3 thermal barrier enables stable propagation on substrates that would otherwise quench the reaction. The results of this study will facilitate the integration of Ni/Al multilayers as intrinsic heat sources on different substrates for applications in micro/nanodevices.

15.
Nat Commun ; 10(1): 1853, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015443

RESUMO

An extensive range of metals can be dissolved and re-deposited in liquid solvents using electrochemistry. We harness this concept for additive manufacturing, demonstrating the focused electrohydrodynamic ejection of metal ions dissolved from sacrificial anodes and their subsequent reduction to elemental metals on the substrate. This technique, termed electrohydrodynamic redox printing (EHD-RP), enables the direct, ink-free fabrication of polycrystalline multi-metal 3D structures without the need for post-print processing. On-the-fly switching and mixing of two metals printed from a single multichannel nozzle facilitates a chemical feature size of <400 nm with a spatial resolution of 250 nm at printing speeds of up to 10 voxels per second. As shown, the additive control of the chemical architecture of materials provided by EHD-RP unlocks the synthesis of 3D bi-metal structures with programmed local properties and opens new avenues for the direct fabrication of chemically architected materials and devices.

16.
Sci Rep ; 9(1): 476, 2019 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-30679526

RESUMO

Controlling anisotropy in self-assembled structures enables engineering of materials with highly directional response. Here, we harness the anisotropic growth of ice walls in a thermal gradient to assemble an anisotropic refractory metal structure, which is then infiltrated with Cu to make a composite. Using experiments and simulations, we demonstrate on the specific example of tungsten-copper composites the effect of anisotropy on the electrical and mechanical properties. The measured strength and resistivity are compared to isotropic tungsten-copper composites fabricated by standard powder metallurgical methods. Our results have the potential to fuel the development of more efficient materials, used in electrical power grids and solar-thermal energy conversion systems. The method presented here can be used with a variety of refractory metals and ceramics, which fosters the opportunity to design and functionalize a vast class of new anisotropic load-bearing hybrid metal composites with highly directional properties.

17.
Sci Rep ; 8(1): 15419, 2018 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-30337676

RESUMO

The development of non-noble nano-porous metal materials is hindered by surface oxidation reactions and from the difficulty to generate long range order pore arrays. Dealloying is a promising route to generate such materials by selective chemical etching of metal alloy materials. This process can generate nano-metal materials with superior plasmonic, catalytic and adsorptive surface properties. Here, the impact of properties of the etching solution on the dealloying process to generate nano-pores across thin film alloys was investigated by in-situ SAXS dealloying experiments. Single phase CuZn alloys were used as model materials to evaluate the influence of the solution temperature on the pore formation kinetics. This novel analysis allowed to visualize the change in surface properties of the materials over time, including their surface area as well as their pore and ligament sizes. The dealloying kinetics at the very early stage of the process were found to be critical to both stable pore formation and stabilization. SAXS in-situ data were correlated to the morphological properties of the materials obtained from ex-situ samples by Rutherford back scattering and scanning electron microscopy.

18.
Nano Lett ; 17(3): 1569-1574, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28125236

RESUMO

Metals with nanometer-scale grains or nanocrystalline metals exhibit high strengths at ambient conditions, yet their strengths substantially decrease with increasing temperature, rendering them unsuitable for usage at high temperatures. Here, we show that a nanocrystalline high-entropy alloy (HEA) retains an extraordinarily high yield strength over 5 GPa up to 600 °C, 1 order of magnitude higher than that of its coarse-grained form and 5 times higher than that of its single-crystalline equivalent. As a result, such nanostructured HEAs reveal strengthening figures of merit-normalized strength by the shear modulus above 1/50 and strength-to-density ratios above 0.4 MJ/kg, which are substantially higher than any previously reported values for nanocrystalline metals in the same homologous temperature range, as well as low strain-rate sensitivity of ∼0.005. Nanocrystalline HEAs with these properties represent a new class of nanomaterials for high-stress and high-temperature applications in aerospace, civilian infrastructure, and energy sectors.

19.
Adv Mater ; 29(17)2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28052421

RESUMO

Currently, the focus of additive manufacturing (AM) is shifting from simple prototyping to actual production. One driving factor of this process is the ability of AM to build geometries that are not accessible by subtractive fabrication techniques. While these techniques often call for a geometry that is easiest to manufacture, AM enables the geometry required for best performance to be built by freeing the design process from restrictions imposed by traditional machining. At the micrometer scale, the design limitations of standard fabrication techniques are even more severe. Microscale AM thus holds great potential, as confirmed by the rapid success of commercial micro-stereolithography tools as an enabling technology for a broad range of scientific applications. For metals, however, there is still no established AM solution at small scales. To tackle the limited resolution of standard metal AM methods (a few tens of micrometers at best), various new techniques aimed at the micrometer scale and below are presently under development. Here, we review these recent efforts. Specifically, we feature the techniques of direct ink writing, electrohydrodynamic printing, laser-assisted electrophoretic deposition, laser-induced forward transfer, local electroplating methods, laser-induced photoreduction and focused electron or ion beam induced deposition. Although these methods have proven to facilitate the AM of metals with feature sizes in the range of 0.1-10 µm, they are still in a prototype stage and their potential is not fully explored yet. For instance, comprehensive studies of material availability and material properties are often lacking, yet compulsory for actual applications. We address these items while critically discussing and comparing the potential of current microscale metal AM techniques.

20.
Light Sci Appl ; 6(5): e16233, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-30167248

RESUMO

Structural colors have drawn wide attention for their potential as a future printing technology for various applications, ranging from biomimetic tissues to adaptive camouflage materials. However, an efficient approach to realize robust colors with a scalable fabrication technique is still lacking, hampering the realization of practical applications with this platform. Here, we develop a new approach based on large-scale network metamaterials that combine dealloyed subwavelength structures at the nanoscale with lossless, ultra-thin dielectric coatings. By using theory and experiments, we show how subwavelength dielectric coatings control a mechanism of resonant light coupling with epsilon-near-zero regions generated in the metallic network, generating the formation of saturated structural colors that cover a wide portion of the spectrum. Ellipsometry measurements support the efficient observation of these colors, even at angles of 70°. The network-like architecture of these nanomaterials allows for high mechanical resistance, which is quantified in a series of nano-scratch tests. With such remarkable properties, these metastructures represent a robust design technology for real-world, large-scale commercial applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA