Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 26(4): 888-899, 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31696989

RESUMO

The anion-binding and transport properties of an extensive library of thiophene-based molecules are reported. Seventeen bis-urea positional isomers, with different binding conformations and lipophilicities, have been synthesized by appending α- or ß-thiophene or α-, ß-, or γ-benzo[b]thiophene moieties to an ortho-phenylenediamine central core, yielding six subsets of positional isomers. Through 1 H NMR, X-ray crystallography, molecular modelling, and anion efflux studies, it is demonstrated that the most active transporters adopt a pre-organized binding conformation capable of promoting the recognition of chloride, using urea and C-H binding groups in a cooperative fashion. Additional large unilamellar vesicle-based assays, carried out under electroneutral and electrogenic conditions, together with N-methyl-d-glucamine chloride assays, have indicated that anion efflux occurs mainly through an H+ /Cl- symport mechanism. On the other hand, the most efficient anion transporter displays cytotoxicity against tumor cell lines, while having no effects on a cystic fibrosis cell line.


Assuntos
Ânions/química , Cloretos/química , Tiofenos/química , Ureia/química , Transporte Biológico , Linhagem Celular Tumoral , Cristalografia por Raios X , Humanos , Transporte de Íons , Espectroscopia de Ressonância Magnética
2.
Chem Sci ; 10(7): 1976-1985, 2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30881627

RESUMO

A series of fluorinated tripodal tris-thioureas function as highly active anion transporters across lipid bilayers and cell membranes. Here, we investigate their mechanism of action using anion transport assays in cells and synthetic vesicles and molecular modelling of transporter-lipid interactions. When compared with non-fluorinated analogues, fluorinated compounds demonstrate a different mechanism of membrane transport because the free transporter cannot effectively diffuse through the membrane. As a result, in H+/Cl- cotransport assays, fluorinated transporters require the presence of oleic acid to form anionic oleate complexes for recycling of the transporter, whereas non-fluorinated analogues readily diffuse through the membrane as free transporters and show synergistic transport with the proton transporter gramicidin. Molecular dynamics simulations revealed markedly stronger transporter-lipid interactions for fluorinated compounds compared with non-fluorinated analogues and hence, higher energy barriers for fluorinated compounds to cross the membrane as free transporters. With use of appropriate proton transporters to ensure measurement of the correct rate-limiting steps, the transport rates determined in synthetic vesicle assays show excellent agreement with the anion transport rates determined in cell-based assays. We conclude that integration of computational and experimental methods provides a strategy to optimise transmembrane anion transporter design for biomedical applications.

3.
Chem Commun (Camb) ; 51(23): 4883-6, 2015 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-25704626

RESUMO

The anion transport properties of a range of alkyl-substituted phenylthioureas were tested in vesicles of different lipid composition. Although changes in the bilayer affected the rate of transport for all compounds in the series, the 'ideal' log P for peak activity did not change depending on the composition of the bilayers tested.


Assuntos
Transporte de Íons , Lipídeos/química , Membranas Artificiais , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA