Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Diagnostics (Basel) ; 14(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38337775

RESUMO

Background: Breast cancer (BC) is a heterogeneous disease made up of clones with different metastatic potential. Intratumoral heterogeneity may cause metastases to show divergent biomarker expression, potentially affecting chemotherapy response. Methods: We investigated the immunohistochemical (IHC) and FISH profile of estrogen receptors (ER), progesterone (PR) receptors, Ki67, and HER2 in a series of BC-matched primary tumors (PTs) and axillary lymph node (ALN) metastases in pre-operative core needle biopsies (CNBs). Phenotypical findings were correlated to morphological features and their clinical implications. Results: Divergent expression between PTs and ALNs was found in 10% of the tumors, often involving multiple biomarkers (12/31, 39%). Most (52%) displayed significant differences in ER and PR staining. HER2 divergences were observed in almost three-quarters of the cases (23/31, 74%), with five (16%) switching from negativity to overexpression/amplification in ALNs. Roughly 90% of disparities reflected significant morphological differences between PTs and ALN metastases. Less than half of the discrepancies (12/31, 39%) modified pre/post-operative treatment options. Conclusions: We observed relevant discrepancies in biomarker expression between PTs and metastatic ALNs in a noteworthy proportion (10%) of preoperative BC CNBs, which were often able to influence therapies. Hence, our data suggest routine preoperative assessment of biomarkers in both PTs and ALNs in cases showing significant morphological differences.

2.
Nutrients ; 15(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37892432

RESUMO

Breast cancer (BC), a complex disease with several influencing factors, is significantly impacted by dietary habits. The ketogenic diet (KD), characterized by high fat and low carbohydrate intake, has gained attention as a potential therapeutic approach, but its effects on BC remain unclear. This review seeks to summarize the current knowledge on the principles of the KD, its metabolic influence on BC cells, and the findings of recent clinical trials, in order to elucidate the potential therapeutic role of the KD in BC management. For these purposes, a comprehensive literature review was conducted selecting preclinical and clinical studies that investigate the relationship between the KD and BC. The selection criteria prioritized studies exploring the KD's metabolic effects on BC cells and current clinical trials involving the KD in BC management. The reviewed studies provide a diverse range of findings, with some suggesting potential benefits of the KD in inhibiting tumor growth and improving treatment response. However, robust clinical trials providing clear evidence of the KD's efficacy as a standalone therapeutic approach in BC are still lacking. There are also significant concerns regarding the safety and long-term effects of sustained ketosis in cancer patients. The therapeutic potential of the KD in BC remains an area of active research and debate. While preliminary findings are promising, definitive conclusions are hindered by inconsistent results and limited human trial data. Future research, specifically well-structured, large-scale clinical trials, is necessary to provide a comprehensive understanding of the role of the KD in BC treatment. Until then, caution should be exercised in its application, and patients should continue prioritizing evidence-based, standard-of-care treatments.


Assuntos
Neoplasias da Mama , Dieta Cetogênica , Humanos , Feminino , Dieta Cetogênica/métodos , Neoplasias da Mama/terapia
3.
Cell Death Dis ; 12(7): 625, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34135312

RESUMO

Motoneuronal loss is the main feature of amyotrophic lateral sclerosis, although pathogenesis is extremely complex involving both neural and muscle cells. In order to translationally engage the sonic hedgehog pathway, which is a promising target for neural regeneration, recent studies have reported on the neuroprotective effects of clobetasol, an FDA-approved glucocorticoid, able to activate this pathway via smoothened. Herein we sought to examine functional, cellular, and metabolic effects of clobetasol in a neurotoxic mouse model of spinal motoneuronal loss. We found that clobetasol reduces muscle denervation and motor impairments in part by restoring sonic hedgehog signaling and supporting spinal plasticity. These effects were coupled with reduced pro-inflammatory microglia and reactive astrogliosis, reduced muscle atrophy, and support of mitochondrial integrity and metabolism. Our results suggest that clobetasol stimulates a series of compensatory processes and therefore represents a translational approach for intractable denervating and neurodegenerative disorders.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Clobetasol/farmacologia , Glucocorticoides/farmacologia , Proteínas Hedgehog/metabolismo , Atividade Motora/efeitos dos fármacos , Neurônios Motores/efeitos dos fármacos , Músculo Esquelético/inervação , Plasticidade Neuronal/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Coluna Vertebral/efeitos dos fármacos , Esclerose Lateral Amiotrófica/induzido quimicamente , Esclerose Lateral Amiotrófica/imunologia , Esclerose Lateral Amiotrófica/metabolismo , Animais , Estudos de Casos e Controles , Toxina da Cólera , Bases de Dados Genéticas , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Camundongos da Linhagem 129 , Mitocôndrias Musculares/efeitos dos fármacos , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/patologia , Neurônios Motores/imunologia , Neurônios Motores/metabolismo , Teste de Campo Aberto , Saporinas , Transdução de Sinais , Receptor Smoothened/agonistas , Receptor Smoothened/metabolismo , Coluna Vertebral/imunologia , Coluna Vertebral/metabolismo , Coluna Vertebral/fisiopatologia
4.
Int J Mol Sci ; 20(6)2019 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-30917493

RESUMO

Despite the relevant research efforts, the causes of amyotrophic lateral sclerosis (ALS) are still unknown and no effective cure is available. Many authors suggest that ALS is a multi-system disease caused by a network failure instead of a cell-autonomous pathology restricted to motoneurons. Although motoneuronal loss is the critical hallmark of ALS given their specific vulnerability, other cell populations, including muscle and glial cells, are involved in disease onset and progression, but unraveling their specific role and crosstalk requires further investigation. In particular, little is known about the plastic changes of the degenerating motor system. These spontaneous compensatory processes are unable to halt the disease progression, but their elucidation and possible use as a therapeutic target represents an important aim of ALS research. Genetic animal models of disease represent useful tools to validate proven hypotheses or to test potential therapies, and the conception of novel hypotheses about ALS causes or the study of pathogenic mechanisms may be advantaged by the use of relatively simple in vivo models recapitulating specific aspects of the disease, thus avoiding the inclusion of too many confounding factors in an experimental setting. Here, we used a neurotoxic model of spinal motoneuron depletion induced by injection of cholera toxin-B saporin in the gastrocnemius muscle to investigate the possible occurrence of compensatory changes in both the muscle and spinal cord. The results showed that, following the lesion, the skeletal muscle became atrophic and displayed electromyographic activity similar to that observed in ALS patients. Moreover, the changes in muscle fiber morphology were different from that observed in ALS models, thus suggesting that some muscular effects of disease may be primary effects instead of being simply caused by denervation. Notably, we found plastic changes in the surviving motoneurons that can produce a functional restoration probably similar to the compensatory changes occurring in disease. These changes could be at least partially driven by glutamatergic signaling, and astrocytes contacting the surviving motoneurons may support this process.


Assuntos
Atrofia Muscular Espinal/fisiopatologia , Junção Neuromuscular/fisiopatologia , Plasticidade Neuronal , Animais , Toxina da Cólera/toxicidade , Masculino , Camundongos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiopatologia , Atrofia Muscular Espinal/etiologia , Atrofia Muscular Espinal/patologia , Junção Neuromuscular/patologia , Saporinas/toxicidade , Medula Espinal/patologia , Medula Espinal/fisiopatologia
5.
Acta Histochem ; 117(4-5): 415-24, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25765113

RESUMO

The protein cyclin D1 (CD1), which belongs to a family of proteins functioning as regulators of CDKs (cyclin-dependent kinases) throughout the cell cycle, has been immunohistochemically detected in a wide variety of human malignant tumors. The aim of the present study was to investigate immunohistochemically the expression and distribution of CD1 in the developing human peripheral sympathetic nervous system (PSNS) and in childhood peripheral neuroblastic tumors (neuroblastomas, ganglioneuroblastomas, and ganglioneuromas). The above mentioned fetal and neoplastic tissues represent an in vivo model in which undifferentiated neuroblastic cells undergo ganglion cell differentiation. During development, a strong nuclear expression of CD1 was restricted to neuroblasts, disappearing progressively from the maturing ganglion cells with increasing gestational age. In neoplastic tissues, CD1 immunoreactivity was restricted to neuroblastic cell component of all neuroblastomas and ganglioneuroblastomas, whereas it was absent or only focally detectable in maturing/mature ganglion cell component of differentiating neuroblastomas, ganglioneuroblastomas, and ganglioneuromas. We conclude that CD1 is a reliable marker, which can be used routinely to stain neuroblastic cells in both developing and neoplastic tissues. Furthermore, our results indicate that CD1 expression in childhood peripheral neuroblastic tumors recapitulates the changes during normal development of PSNS, as previously reported for Bcl-2 oncoprotein, c-ErbB2, insulin-like growth factor 2, ß-2-microglobulin, and cathepsin D. This is consistent with the current view that childhood peripheral neuroblastic tumors exhibit gene expression profiles mirroring those occurring during PSNS development.


Assuntos
Biomarcadores Tumorais/biossíntese , Ciclina D1/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Regulação Neoplásica da Expressão Gênica , Neuroblastoma , Sistema Nervoso Simpático , Adolescente , Adulto , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Criança , Pré-Escolar , Feminino , Humanos , Imuno-Histoquímica/métodos , Lactente , Masculino , Neuroblastoma/embriologia , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Sistema Nervoso Simpático/embriologia , Sistema Nervoso Simpático/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA