Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 12(2): e0171695, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28212396

RESUMO

Infections due to Cryptococcus are a leading cause of fungal infections worldwide and are acquired as a result of environmental exposure to desiccated yeast or spores. The ability of Cryptococcus to grow, mate, and produce infectious propagules in association with plants is important for the maintenance of the genetic diversity and virulence factors important for infection of animals and humans. In the Western United States and Canada, Cryptococcus has been associated with conifers and tree species other than Eucalyptus; however, to date Cryptococcus has only been studied on live Arabidopsis thaliana, Eucalyptus sp., and Terminalia catappa (almond) seedlings. Previous research has demonstrated the ability of Cryptococcus to colonize live plants, leaves, and vasculature. We investigated the ability of Cryptococcus to grow on live seedlings of the angiosperms, A. thaliana, Eucalyptus camaldulensis, Colophospermum mopane, and the gymnosperms, Pseudotsuga menziesii (Douglas fir), and Tsuga heterophylla (Western hemlock). We observed a broad-range ability of Cryptococcus to colonize both traditional infection models as well as newly tested conifer species. Furthermore, C. neoformans, C. deneoformans, C. gattii (VGI), C. deuterogattii (VGII) and C. bacillisporus (VGIII) were able to colonize live plant leaves and needles but also undergo filamentation and mating on agar seeded with plant materials or in saprobic association with dead plant materials. The ability of Cryptococcus to grow and undergo filamentation and reproduction in saprobic association with both angiosperms and gymnosperms highlights an important role of plant debris in the sexual cycle and exposure to infectious propagules. This study highlights the broad importance of plants (and plant debris) as the ecological niche and reservoirs of infectious propagules of Cryptococcus in the environment.


Assuntos
Cryptococcus/fisiologia , Magnoliopsida/microbiologia , Magnoliopsida/fisiologia , Animais , Cryptococcus/patogenicidade , Feminino , Humanos , Masculino , Camundongos , Especificidade da Espécie
2.
Pediatr Infect Dis J ; 34(6): 662-6, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25806844

RESUMO

Cryptococcosis is infrequent in children, and isolated cryptococcal osteomyelitis is rarely encountered. Here, we describe a 14-year-old patient in remission from T-cell acute lymphoblastic leukemia with osteomyelitis because of Cryptococcus neoformans var. grubii. The patient was effectively treated with antifungal therapy.


Assuntos
Criptococose/diagnóstico , Criptococose/tratamento farmacológico , Cryptococcus neoformans/isolamento & purificação , Osteomielite/diagnóstico , Osteomielite/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/complicações , Adolescente , Antifúngicos/uso terapêutico , Humanos , Masculino , Sobreviventes , Resultado do Tratamento
3.
Fungal Genet Biol ; 75: 64-71, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25624069

RESUMO

Multilocus sequence typing (MLST) has become the preferred method for genotyping many biological species, and it is especially useful for analyzing haploid eukaryotes. MLST is rigorous, reproducible, and informative, and MLST genotyping has been shown to identify major phylogenetic clades, molecular groups, or subpopulations of a species, as well as individual strains or clones. MLST molecular types often correlate with important phenotypes. Conventional MLST involves the extraction of genomic DNA and the amplification by PCR of several conserved, unlinked gene sequences from a sample of isolates of the taxon under investigation. In some cases, as few as three loci are sufficient to yield definitive results. The amplicons are sequenced, aligned, and compared by phylogenetic methods to distinguish statistically significant differences among individuals and clades. Although MLST is simpler, faster, and less expensive than whole genome sequencing, it is more costly and time-consuming than less reliable genotyping methods (e.g. amplified fragment length polymorphisms). Here, we describe a new MLST method that uses next-generation sequencing, a multiplexing protocol, and appropriate analytical software to provide accurate, rapid, and economical MLST genotyping of 96 or more isolates in single assay. We demonstrate this methodology by genotyping isolates of the well-characterized, human pathogenic yeast Cryptococcus neoformans.


Assuntos
Cryptococcus neoformans/classificação , Cryptococcus neoformans/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Tipagem de Sequências Multilocus/métodos , Software , Análise Custo-Benefício , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala/economia , Humanos , Tipagem de Sequências Multilocus/economia , Filogenia , Reação em Cadeia da Polimerase
4.
PLoS One ; 9(9): e108633, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25251413

RESUMO

BACKGROUND: Although Cryptococcus laurentii has been considered saprophytic and its taxonomy is still being described, several cases of human infections have already reported. This study aimed to evaluate molecular aspects of C. laurentii isolates from Brazil, Botswana, Canada, and the United States. METHODS: In this study, 100 phenotypically identified C. laurentii isolates were evaluated by sequencing the 18S nuclear ribosomal small subunit rRNA gene (18S-SSU), D1/D2 region of 28S nuclear ribosomal large subunit rRNA gene (28S-LSU), and the internal transcribed spacer (ITS) of the ribosomal region. RESULTS: BLAST searches using 550-bp, 650-bp, and 550-bp sequenced amplicons obtained from the 18S-SSU, 28S-LSU, and the ITS region led to the identification of 75 C. laurentii strains that shared 99-100% identity with C. laurentii CBS 139. A total of nine isolates shared 99% identity with both Bullera sp. VY-68 and C. laurentii RY1. One isolate shared 99% identity with Cryptococcus rajasthanensis CBS 10406, and eight isolates shared 100% identity with Cryptococcus sp. APSS 862 according to the 28S-LSU and ITS regions and designated as Cryptococcus aspenensis sp. nov. (CBS 13867). While 16 isolates shared 99% identity with Cryptococcus flavescens CBS 942 according to the 18S-SSU sequence, only six were confirmed using the 28S-LSU and ITS region sequences. The remaining 10 shared 99% identity with Cryptococcus terrestris CBS 10810, which was recently described in Brazil. Through concatenated sequence analyses, seven sequence types in C. laurentii, three in C. flavescens, one in C. terrestris, and one in the C. aspenensis sp. nov. were identified. CONCLUSIONS: Sequencing permitted the characterization of 75% of the environmental C. laurentii isolates from different geographical areas and the identification of seven haplotypes of this species. Among sequenced regions, the increased variability of the ITS region in comparison to the 18S-SSU and 28S-LSU regions reinforces its applicability as a DNA barcode.


Assuntos
Cryptococcus/classificação , Filogenia , Haplótipos , Especificidade da Espécie
5.
PLoS Pathog ; 10(8): e1004285, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25144534

RESUMO

Ongoing Cryptococcus gattii outbreaks in the Western United States and Canada illustrate the impact of environmental reservoirs and both clonal and recombining propagation in driving emergence and expansion of microbial pathogens. C. gattii comprises four distinct molecular types: VGI, VGII, VGIII, and VGIV, with no evidence of nuclear genetic exchange, indicating these represent distinct species. C. gattii VGII isolates are causing the Pacific Northwest outbreak, whereas VGIII isolates frequently infect HIV/AIDS patients in Southern California. VGI, VGII, and VGIII have been isolated from patients and animals in the Western US, suggesting these molecular types occur in the environment. However, only two environmental isolates of C. gattii have ever been reported from California: CBS7750 (VGII) and WM161 (VGIII). The incongruence of frequent clinical presence and uncommon environmental isolation suggests an unknown C. gattii reservoir in California. Here we report frequent isolation of C. gattii VGIII MATα and MATa isolates and infrequent isolation of VGI MATα from environmental sources in Southern California. VGIII isolates were obtained from soil debris associated with tree species not previously reported as hosts from sites near residences of infected patients. These isolates are fertile under laboratory conditions, produce abundant spores, and are part of both locally and more distantly recombining populations. MLST and whole genome sequence analysis provide compelling evidence that these environmental isolates are the source of human infections. Isolates displayed wide-ranging virulence in macrophage and animal models. When clinical and environmental isolates with indistinguishable MLST profiles were compared, environmental isolates were less virulent. Taken together, our studies reveal an environmental source and risk of C. gattii to HIV/AIDS patients with implications for the >1,000,000 cryptococcal infections occurring annually for which the causative isolate is rarely assigned species status. Thus, the C. gattii global health burden could be more substantial than currently appreciated.


Assuntos
Criptococose/microbiologia , Infecções por HIV/microbiologia , Microbiologia do Solo , Árvores/microbiologia , Síndrome da Imunodeficiência Adquirida/complicações , Síndrome da Imunodeficiência Adquirida/microbiologia , Animais , California , Separação Celular , Criptococose/genética , Cryptococcus gattii/genética , Modelos Animais de Doenças , Feminino , Infecções por HIV/complicações , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Filogenia , Reação em Cadeia da Polimerase
6.
PLoS One ; 8(7): e69804, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23894542

RESUMO

Cryptococcus is an emerging global health threat that is annually responsible for over 1,000,000 infections and one third of all AIDS patient deaths. There is an ongoing outbreak of cryptococcosis in the western United States and Canada. Cryptococcosis is a disease resulting from the inhalation of the infectious propagules from the environment. The current and most frequently used animal infection models initiate infection via liquid suspension through intranasal instillation or intravenous injection. These models do not replicate the typically dry nature of aerosol exposure and may hinder our ability to decipher the initial events that lead to clearance or the establishment of infection. We have established a standardized aerosol model of murine infection for the human fungal pathogen Cryptococcus. Aerosolized cells were generated utilizing a Collison nebulizer in a whole-body Madison Chamber at different humidity conditions. The aerosols inside the chamber were sampled using a BioSampler to determine viable aerosol concentration and spray factor (ratio of viable aerosol concentration to total inoculum concentration). We have effectively delivered yeast and yeast-spore mixtures to the lungs of mice and observed the establishment of disease. We observed that growth conditions prior to exposure and humidity within the Madison Chamber during exposure can alter Cryptococcus survival and dose retained in mice.


Assuntos
Criptococose/microbiologia , Cryptococcus gattii/fisiologia , Cryptococcus neoformans/fisiologia , Modelos Animais de Doenças , Umidade , Aerossóis , Animais , Camundongos , Camundongos Endogâmicos C57BL , Nebulizadores e Vaporizadores , Tamanho da Partícula
7.
Eukaryot Cell ; 12(5): 746-60, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23524993

RESUMO

Kwoniella mangrovensis has been described as a sexual species with a bipolar mating system. Phylogenetic analysis of multiple genes places this species together with Kwoniella heveanensis in the Kwoniella clade, a sister clade to that containing two pathogenic species of global importance, Cryptococcus neoformans and Cryptococcus gattii, within the Tremellales. Recent studies defining the mating type loci (MAT) of species in these clades showed that, with the exception of C. neoformans and C. gattii, which are bipolar with a single biallelic multigene MAT locus, several other species feature a tetrapolar mating system with two unlinked loci (homeodomain [HD] and pheromone/receptor [P/R] loci). We characterized several strains from the original study describing K. mangrovensis; two MAT regions were amplified and sequenced: the STE20 gene (P/R locus) and the divergently transcribed SXI1 and SXI2 genes (HD locus). We identified five different mating types with different STE20/SXI allele combinations that together with results of mating experiments demonstrate that K. mangrovensis is not bipolar but instead has a tetrapolar mating system. Sequence and gene analysis for a 43-kb segment of the K. mangrovensis type strain MAT locus revealed remarkable synteny with the homologous K. heveanensis MAT P/R region, providing new insights into slower evolution of MAT loci in the Kwoniella compared to the Cryptococcus clade of the Tremellales. The study of additional isolates from plant substrates in Europe and Botswana using a combination of multilocus sequencing with MAT gene analysis revealed two novel sibling species that we name Kwoniella europaea and Kwoniella botswanensis and which appear to also have tetrapolar mating systems.


Assuntos
Basidiomycota/genética , Genes Fúngicos Tipo Acasalamento , Sequência de Aminoácidos , Basidiomycota/fisiologia , Cryptococcus/genética , Evolução Molecular , Loci Gênicos , Anotação de Sequência Molecular , Dados de Sequência Molecular , Tipagem de Sequências Multilocus , Técnicas de Tipagem Micológica , Filogenia
8.
Curr Fungal Infect Rep ; 6(4): 245-256, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23243480

RESUMO

Cryptococcus gattii is an environmentally occurring pathogen that is responsible for causing cryptococcosis marked by pneumonia and meningoencephalitis in humans and animals. C. gattii can form long-term associations with trees and soil resulting in the production of infectious propagules (spores and desiccated yeast). The ever expanding reports of clinical and environmental isolation of C. gattii in temperate climates strongly imply C. gattii occurs world-wide. The key ability of yeast and spores to enter, survive, multiply, and exit host cells and to infect immunocompetent hosts distinguishes C. gattii as a primary pathogen and suggest evolution of C. gattii pathogenesis as a result of interaction with plants and other organisms in its environmental niche. Here we summarize the historical literature on C. gattii and recent literature supporting the world-wide occurrence of the primary pathogen C. gattii.

9.
G3 (Bethesda) ; 2(6): 675-91, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22690377

RESUMO

Candida glabrata is an emerging human fungal pathogen that is frequently drug tolerant, resulting in difficulties in treatment and a higher mortality in immunocompromised patients. The calcium-activated protein phosphatase calcineurin plays critical roles in controlling drug tolerance, hyphal growth, and virulence in diverse fungal pathogens via distinct mechanisms involving survival in serum or growth at host temperature (37° and higher). Here, we comprehensively studied the calcineurin signaling cascade in C. glabrata and found novel and uncharacterized functions of calcineurin and its downstream target Crz1 in governing thermotolerance, intracellular architecture, and pathogenesis in murine ocular, urinary tract, and systemic infections. This represents a second independent origin of a role for calcineurin in thermotolerant growth of a major human fungal pathogen, distinct from that which arose independently in Cryptococcus neoformans. Calcineurin also promotes survival of C. glabrata in serum via mechanisms distinct from C. albicans and thereby enables establishment of tissue colonization in a murine systemic infection model. To understand calcineurin signaling in detail, we performed global transcript profiling analysis and identified calcineurin- and Crz1-dependent genes in C. glabrata involved in cell wall biosynthesis, heat shock responses, and calcineurin function. Regulators of calcineurin (RCN) are a novel family of calcineurin modifiers, and two members of this family were identified in C. glabrata: Rcn1 and Rcn2. Our studies demonstrate that Rcn2 expression is controlled by calcineurin and Crz1 to function as a feedback inhibitor of calcineurin in a circuit required for calcium tolerance in C. glabrata. In contrast, the calcineurin regulator Rcn1 activates calcineurin signaling. Interestingly, neither Rcn1 nor Rcn2 is required for virulence in a murine systemic infection model. Taken together, our findings show that calcineurin signaling plays critical roles in thermotolerance and virulence, and that Rcn1 and Rcn2 have opposing functions in controlling calcineurin signaling in C. glabrata.

10.
PLoS Pathog ; 7(6): e1002086, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21698218

RESUMO

Mucor circinelloides is a zygomycete fungus and an emerging opportunistic pathogen in immunocompromised patients, especially transplant recipients and in some cases otherwise healthy individuals. We have discovered a novel example of size dimorphism linked to virulence. M. circinelloides is a heterothallic fungus: (+) sex allele encodes SexP and (-) sex allele SexM, both of which are HMG domain protein sex determinants. M. circinelloides f. lusitanicus (Mcl) (-) mating type isolates produce larger asexual sporangiospores that are more virulent in the wax moth host compared to (+) isolates that produce smaller less virulent sporangiospores. The larger sporangiospores germinate inside and lyse macrophages, whereas the smaller sporangiospores do not. sexMΔ mutants are sterile and still produce larger virulent sporangiospores, suggesting that either the sex locus is not involved in virulence/spore size or the sexP allele plays an inhibitory role. Phylogenetic analysis supports that at least three extant subspecies populate the M. circinelloides complex in nature: Mcl, M. circinelloides f. griseocyanus, and M. circinelloides f. circinelloides (Mcc). Mcc was found to be more prevalent among clinical Mucor isolates, and more virulent than Mcl in a diabetic murine model in contrast to the wax moth host. The M. circinelloides sex locus encodes an HMG domain protein (SexP for plus and SexM for minus mating types) flanked by genes encoding triose phosphate transporter (TPT) and RNA helicase homologs. The borders of the sex locus between the three subspecies differ: the Mcg sex locus includes the promoters of both the TPT and the RNA helicase genes, whereas the Mcl and Mcc sex locus includes only the TPT gene promoter. Mating between subspecies was restricted compared to mating within subspecies. These findings demonstrate that spore size dimorphism is linked to virulence of M. circinelloides species and that plasticity of the sex locus and adaptations in pathogenicity have occurred during speciation of the M. circinelloides complex.


Assuntos
Mucor/patogenicidade , Esporos Fúngicos/citologia , Virulência/fisiologia , Processos de Crescimento Celular/genética , Processos de Crescimento Celular/fisiologia , Tamanho Celular , Individualidade , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Mucor/citologia , Mucor/genética , Mucor/fisiologia , Tamanho das Organelas/fisiologia , Filogenia , Reprodução/genética , Reprodução/fisiologia , Esporângios/citologia , Esporos Fúngicos/genética , Esporos Fúngicos/fisiologia , Esporos Fúngicos/ultraestrutura , Virulência/genética
11.
PLoS One ; 5(5): e10783, 2010 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-20520731

RESUMO

BACKGROUND: Massive die-offs of little brown bats (Myotis lucifugus) have been occurring since 2006 in hibernation sites around Albany, New York, and this problem has spread to other States in the Northeastern United States. White cottony fungal growth is seen on the snouts of affected animals, a prominent sign of White Nose Syndrome (WNS). A previous report described the involvement of the fungus Geomyces destructans in WNS, but an identical fungus was recently isolated in France from a bat that was evidently healthy. The fungus has been recovered sparsely despite plentiful availability of afflicted animals. METHODOLOGY/PRINCIPAL FINDINGS: We have investigated 100 bat and environmental samples from eight affected sites in 2008. Our findings provide strong evidence for an etiologic role of G. destructans in bat WNS. (i) Direct smears from bat snouts, Periodic Acid Schiff-stained tissue sections from infected tissues, and scanning electron micrographs of bat tissues all showed fungal structures similar to those of G. destructans. (ii) G. destructans DNA was directly amplified from infected bat tissues, (iii) Isolations of G. destructans in cultures from infected bat tissues showed 100% DNA match with the fungus present in positive tissue samples. (iv) RAPD patterns for all G. destructans cultures isolated from two sites were indistinguishable. (v) The fungal isolates showed psychrophilic growth. (vi) We identified in vitro proteolytic activities suggestive of known fungal pathogenic traits in G. destructans. CONCLUSIONS/SIGNIFICANCE: Further studies are needed to understand whether G. destructans WNS is a symptom or a trigger for bat mass mortality. The availability of well-characterized G. destructans strains should promote an understanding of bat-fungus relationships, and should aid in the screening of biological and chemical control agents.


Assuntos
Ascomicetos/genética , Quirópteros/microbiologia , Micoses/veterinária , Animais , Ascomicetos/classificação , Ascomicetos/isolamento & purificação , Ascomicetos/ultraestrutura , DNA Fúngico/genética , Técnicas de Tipagem Micológica , Micoses/microbiologia , Micoses/patologia , New York , Especificidade de Órgãos , Filogenia , Técnica de Amplificação ao Acaso de DNA Polimórfico , Análise de Sequência de DNA , Síndrome
12.
PLoS One ; 5(6): e10978, 2010 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-20539754

RESUMO

Cryptococcus gattii, an emerging fungal pathogen of humans and animals, is found on a variety of trees in tropical and temperate regions. The ecological niche and virulence of this yeast remain poorly defined. We used Arabidopsis thaliana plants and plant-derived substrates to model C. gattii in its natural habitat. Yeast cells readily colonized scratch-wounded plant leaves and formed distinctive extracellular fibrils (40-100 nm diameter x500-3000 nm length). Extracellular fibrils were observed on live plants and plant-derived substrates by scanning electron microscopy (SEM) and by high voltage- EM (HVEM). Only encapsulated yeast cells formed extracellular fibrils as a capsule-deficient C. gattii mutant completely lacked fibrils. Cells deficient in environmental sensing only formed disorganized extracellular fibrils as apparent from experiments with a C. gattii STE12alpha mutant. C. gattii cells with extracellular fibrils were more virulent in murine model of pulmonary and systemic cryptococcosis than cells lacking fibrils. C. gattii cells with extracellular fibrils were also significantly more resistant to killing by human polymorphonuclear neutrophils (PMN) in vitro even though these PMN produced elaborate neutrophil extracellular traps (NETs). These observations suggest that extracellular fibril formation could be a structural adaptation of C. gattii for cell-to-cell, cell-to-substrate and/or cell-to- phagocyte communications. Such ecological adaptation of C. gattii could play roles in enhanced virulence in mammalian hosts at least initially via inhibition of host PMN- mediated killing.


Assuntos
Cryptococcus gattii/patogenicidade , Neutrófilos/microbiologia , Animais , Arabidopsis/microbiologia , Cryptococcus gattii/fisiologia , Cryptococcus gattii/ultraestrutura , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Varredura , Folhas de Planta/microbiologia , Virulência
13.
Emerg Infect Dis ; 16(1): 14-20, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20031037

RESUMO

Cryptococcus gattii and C. neoformans cause pulmonary and systemic cryptococcosis. Recently, C. gattii was recognized as a distinct pathogen of humans and animals. We analyzed information from 400 publications (1948-2008) to examine whether the fungus occurs globally. Known distribution of C. gattii is possibly limited because specialized reagents for differentiation from C. neoformans are not readily available and not always used, and environmental surveys are patchy. However, autochthonous reports of C. gattii cryptococcosis have now been recognized from tropical and temperate regions. An ongoing outbreak in western Canada strengthens the case that the range of the pathogen has expanded. A few studies have highlighted differences in cryptococcosis between C. gattii and C. neoformans. More than 50 tree species have yielded C. gattii especially from decayed hollows suggesting a possible ecologic niche. This pathogen merits more attention so its environmental occurrence and role in cryptococcosis can be accurately determined.


Assuntos
Criptococose/epidemiologia , Cryptococcus gattii , Animais , Criptococose/diagnóstico , Criptococose/microbiologia , Cryptococcus gattii/classificação , Cryptococcus neoformans , Reservatórios de Doenças/microbiologia , Previsões , Saúde Global , Humanos , Sorotipagem , Árvores/microbiologia
14.
Eukaryot Cell ; 5(7): 1065-80, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16835451

RESUMO

Cryptococcus gattii is a primary pathogenic yeast, increasingly important in public health, but factors responsible for its host predilection and geographical distribution remain largely unknown. We have characterized C. gattii STE12alpha to probe its role in biology and pathogenesis because this transcription factor has been linked to virulence in many human and plant pathogenic fungi. A full-length STE12alpha gene was cloned by colony hybridization and sequenced using primer walk and 3' rapid amplification of cDNA ends strategies, and a ste12alpha delta gene knockout mutant was created by URA5 insertion at the homologous site. A semiquantitative analysis revealed delayed and poor mating in ste12alpha delta mutant; this defect was not reversed by exogenous cyclic AMP. C. gattii parent and mutant strains showed robust haploid fruiting. Among putative virulence factors tested, the laccase transcript and enzymatic activity were down regulated in the ste12alpha delta mutant, with diminished production of melanin. However, capsule, superoxide dismutase, phospholipase, and urease were unaffected. Similarly, Ste12 deficiency did not cause any auxotrophy, assimilation defects, or sensitivity to a large panel of chemicals and antifungals. The ste12alpha delta mutant was markedly attenuated in virulence in both BALB/c and A/Jcr mice models of meningoencephalitis, and it also exhibited significant in vivo growth reduction and was highly susceptible to in vitro killing by human neutrophils (polymorphonuclear leukocytes). In tests designed to simulate the C. gattii natural habitat, the ste12alpha delta mutant was poorly pigmented on wood agar prepared from two tree species and showed poor survival and multiplication in wood blocks. Thus, STE12alpha plays distinct roles in C. gattii morphogenesis, virulence, and ecological fitness.


Assuntos
Cryptococcus/crescimento & desenvolvimento , Cryptococcus/patogenicidade , Ecossistema , Proteínas Fúngicas/fisiologia , Morfogênese , Fatores de Transcrição/fisiologia , Virulência , Animais , Patógenos Transmitidos pelo Sangue/isolamento & purificação , Carpóforos/genética , Carpóforos/fisiologia , Proteínas Fúngicas/genética , Regulação da Expressão Gênica , Genes Fúngicos Tipo Acasalamento/fisiologia , Humanos , Lacase/metabolismo , Masculino , Melaninas/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Modelos Biológicos , Filogenia , Pigmentação/fisiologia , Especificidade da Espécie , Fatores de Transcrição/genética , Madeira
15.
Biochem Biophys Res Commun ; 326(1): 233-41, 2005 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-15567176

RESUMO

The pathogenic yeast Cryptococcus neoformans (Cn) causes cryptococcosis, a life-threatening disease of the brain. Molecular studies of Cn variety gattii have lagged behind other two varieties (var. grubii and var. neoformans) although they have distinct biology and disease patterns. We focused on gene discovery in MATalpha locus because it predominates in clinical strains. A var. gattii cosmid library was screened with DNA probes from other two varieties. Two positive clones were sequenced to identify ORFs based on similarities to known proteins, and to ESTs using bioinformatics, and manually by a curator. Approximately 76kb sequenced DNA revealed 23 genes and ORFs. The existence of predicted genes was verified by RT-PCR analyses designed to amplify spliced sequences. The results confirmed that the transcripts were expressed both at 30 and 37 degrees C. The var. gattii MATalpha locus genes showed rearrangements in order and orientation vis-a-vis other two varieties. Mating-specific genes showed higher nonsynonymous mutation rates, and gene trees showed var. gattii strains in a distinct clade. The identification of the largest number, thus far, of var. gattii structural genes should set the stage for future molecular pathogenesis studies.


Assuntos
Mapeamento Cromossômico/métodos , Cryptococcus neoformans/classificação , Cryptococcus neoformans/genética , Proteínas Fúngicas/genética , Genoma Fúngico , Locos de Características Quantitativas/genética , Perfilação da Expressão Gênica , Filogenia , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA