Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
3D Print Med ; 7(1): 28, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34477997

RESUMO

PURPOSE: The purpose of this study is to evaluate biomechanical accuracy of 3D printed anatomical vessels using a material jetting printer (J750, Stratasys, Rehovot, Israel) by measuring distensibility via intravascular ultrasound. MATERIALS AND METHODS: The test samples are 3D printed tubes to simulate arterial vessels (aorta, carotid artery, and coronary artery). Each vessel type is defined by design geometry of the vessel inner diameter and wall thickness. Vessel inner diameters are aorta = 30mm, carotid = 7mm, and coronary = 3mm. Vessel wall thickness are aorta = 3mm, carotid = 1.5mm, and coronary = 1mm. Each vessel type was printed in 3 different material options. Material options are user-selected from the J750 printer software graphical user interface as blood vessel wall anatomy elements in 'compliant', 'slightly compliant', and 'rigid' options. Three replicates of each vessel type were printed in each of the three selected material options, for a total of 27 models. The vessels were connected to a flow loop system where pressure was monitored via a pressure wire and cross-sectional area was measured with intravascular ultrasound (IVUS). Distensibility was calculated by comparing the % difference in cross-sectional area vs. pulse pressure to clinical literature values. Target clinical ranges for normal and diseased population distensibility are 10.3-44 % for the aorta, 5.1-10.1 % for carotid artery, and 0.5-6 % for coronary artery. RESULTS: Aorta test vessels had the most clinically representative distensibility when printed in user-selected 'compliant' and 'slightly compliant' material. All aorta test vessels of 'compliant' material (n = 3) and 2 of 3 'slightly compliant' vessels evaluated were within target range. Carotid vessels were most clinically represented in distensibility when printed in 'compliant' and 'slightly compliant' material. For carotid test vessels, 2 of 3 'compliant' material samples and 1 of 3 'slightly compliant' material samples were within target range. Coronary arteries were most clinically represented in distensibility when printed in 'slightly compliant' and 'rigid' material. For coronary test vessels, 1 of 3 'slightly compliant' materials and 3 of 3 'rigid' material samples fell within target range. CONCLUSIONS: This study suggests that advancements in materials and 3D printing technology introduced with the J750 Digital Anatomy 3D Printer can enable anatomical models with clinically relevant distensibility.

2.
Neurosurgery ; 87(4): E445-E453, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32392300

RESUMO

BACKGROUND: Three-dimensional (3D) printing has revolutionized training, education, and device testing. Understanding the design and physical properties of 3D-printed models is important. OBJECTIVE: To systematically review the design, physical properties, accuracy, and experimental outcomes of 3D-printed vascular models used in neurointervention. METHODS: We conducted a systematic review of the literature between January 1, 2000 and September 30, 2018. Public/Publisher MEDLINE (PubMed), Web of Science, Compendex, Cochrane, and Inspec databases were searched using Medical Subject Heading terms for design and physical attributes of 3D-printed models for neurointervention. Information on design and physical properties like compliance, lubricity, flow system, accuracy, and outcome measures were collected. RESULTS: A total of 23 articles were included. Nine studies described 3D-printed models for stroke intervention. Tango Plus (Stratasys) was the most common material used to develop these models. Four studies described a population-representative geometry model. All other studies reported patient-specific vascular geometry. Eight studies reported complete reconstruction of the circle of Willis, anterior, and posterior circulation. Four studies reported a model with extracranial vasculature. One prototype study reported compliance and lubricity. Reported circulation systems included manual flushing, programmable pistons, peristaltic, and pulsatile pumps. Outcomes included thrombolysis in cerebral infarction, post-thrombectomy flow restoration, surgical performance, and qualitative feedback. CONCLUSION: Variations exist in the material, design, and extent of reconstruction of vasculature of 3D-printed models. There is a need for objective characterization of 3D-printed vascular models. We propose the development of population representative 3D-printed models for skill improvement or device testing.


Assuntos
Modelos Anatômicos , Procedimentos Neurocirúrgicos/tendências , Impressão Tridimensional/tendências , Próteses e Implantes/tendências , Desenho de Prótese/tendências , Humanos , Procedimentos Neurocirúrgicos/métodos , Desenho de Prótese/métodos
3.
J Neurointerv Surg ; 10(9): 907-910, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29352061

RESUMO

BACKGROUND: Despite advances in revascularization tools for large vessel occlusion presenting as acute ischemic stroke, a significant subset of clots remain recalcitrant to current strategies. We assessed the effectiveness of a novel thrombectomy device that was specifically designed to retrieve resistant fibrin rich clots, the geometric clot extractor (GCE; Neuravi, Galway, Ireland), in an in vitro cerebrovascular occlusion stroke model. METHODS: After introducing fibrin rich clot analogues into the middle cerebral artery of the model, we compared the rates of recanalization between GCE and Solitaire flow restoration stent retriever (SR; Medtronic, Minneapolis, Minnesota, USA; control group) cases. A maximum of three passes of each device was allowed. If the SR failed to recanalize the vessel after three passes, one pass of the GCE was allowed (rescue cases). RESULTS: In a total of 26 thrombectomy cases (13 GCE, 13 SR), successful recanalization (Thrombolysis in Cerebral Infarction score of 2b or 3) was achieved 100% of the time in the GCE cases with an average of 2.13 passes per case. This rate was significantly higher compared with the Solitaire recanalization rate (7.7%, P<0.0001) with an average of three passes per case. After SR failure (in 92% of cases), successful one pass GCE rescue recanalization was achieved 66% of the time (P<0.005). CONCLUSION: Application of the GCE in this experimental stroke model to retrieve typically recalcitrant fibrin rich clots resulted in higher successful recanalization rates than the SR.


Assuntos
Remoção de Dispositivo/métodos , Fibrina , Stents/efeitos adversos , Trombectomia/instrumentação , Trombectomia/métodos , Trombose/cirurgia , Idoso , Transtornos Cerebrovasculares/diagnóstico por imagem , Transtornos Cerebrovasculares/cirurgia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/prevenção & controle , Trombose/diagnóstico por imagem , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA