Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Nat Commun ; 9(1): 4749, 2018 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-30420639

RESUMO

Obesity is a major threat to global health and metabolically associated with glycerol homeostasis. Here we demonstrate that in human adipocytes, the decreased pH observed during lipolysis (fat burning) correlates with increased glycerol release and stimulation of aquaglyceroporin AQP10. The crystal structure of human AQP10 determined at 2.3 Å resolution unveils the molecular basis for pH modulation-an exceptionally wide selectivity (ar/R) filter and a unique cytoplasmic gate. Structural and functional (in vitro and in vivo) analyses disclose a glycerol-specific pH-dependence and pinpoint pore-lining His80 as the pH-sensor. Molecular dynamics simulations indicate how gate opening is achieved. These findings unravel a unique type of aquaporin regulation important for controlling body fat mass. Thus, targeting the cytoplasmic gate to induce constitutive glycerol secretion may offer an attractive option for treating obesity and related complications.


Assuntos
Tecido Adiposo/metabolismo , Aquaporinas/metabolismo , Glicerol/metabolismo , Adipócitos/metabolismo , Idoso , Aquaporinas/química , Feminino , Humanos , Concentração de Íons de Hidrogênio , Ativação do Canal Iônico , Masculino , Pessoa de Meia-Idade , Simulação de Dinâmica Molecular , Análise de Componente Principal
2.
Sci Rep ; 7(1): 16899, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29203835

RESUMO

The sparse number of high-resolution human membrane protein structures severely restricts our comprehension of molecular physiology and ability to exploit rational drug design. In the search for a standardized, cheap and easily handled human membrane protein production platform, we thoroughly investigated the capacity of S. cerevisiae to deliver high yields of prime quality human AQPs, focusing on poorly characterized members including some previously shown to be difficult to isolate. Exploiting GFP labeled forms we comprehensively optimized production and purification procedures resulting in satisfactory yields of all nine AQP targets. We applied the obtained knowledge to successfully upscale purification of histidine tagged human AQP10 produced in large bioreactors. Glycosylation analysis revealed that AQP7 and 12 were O-glycosylated, AQP10 was N-glycosylated while the other AQPs were not glycosylated. We furthermore performed functional characterization and found that AQP 2, 6 and 8 allowed flux of water whereas AQP3, 7, 9, 10, 11 and 12 also facilitated a glycerol flux. In conclusion, our S. cerevisiae platform emerges as a powerful tool for isolation of functional, difficult-to-express human membrane proteins suitable for biophysical characterization.


Assuntos
Aquaporinas/metabolismo , Saccharomyces cerevisiae/metabolismo , Aquaporinas/química , Aquaporinas/genética , Reatores Biológicos , Colesterol/química , Detergentes/química , Glicopeptídeos/análise , Glicosilação , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Dobramento de Proteína , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Solubilidade , Temperatura , Água/química
3.
Nano Lett ; 17(9): 5790-5798, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28851220

RESUMO

We describe an innovative strategy to generate catalytic compartments with triggered functionality at the nanoscale level by combining pH-reversible biovalves and enzyme-loaded synthetic compartments. The biovalve has been engineered by the attachment of stimuli-responsive peptides to a genetically modified channel porin, enabling a reversible change of the molecular flow through the pores of the porin in response to a pH change in the local environment. The biovalve functionality triggers the reaction inside the cavity of the enzyme-loaded compartments by switching the in situ activity of the enzymes on/off based on a reversible change of the permeability of the membrane, which blocks or allows the passage of substrates and products. The complex functionality of our catalytic compartments is based on the preservation of the integrity of the compartments to protect encapsulated enzymes. An increase of the in situ activity compared to that of the free enzyme and a reversible on/off switch of the activity upon the presence of a specific stimulus is achieved. This strategy provides straightforward solutions for the development of catalytic nanocompartments efficiently producing desired molecules in a controlled, stimuli-responsive manner with high potential in areas, such as medicine, analytical chemistry, and catalysis.


Assuntos
Preparações de Ação Retardada/química , Escherichia coli/química , Membranas Artificiais , Peptídeos/química , Polímeros/química , Porinas/química , Sequência de Aminoácidos , Biomimética , Catálise , Enzimas Imobilizadas/administração & dosagem , Enzimas Imobilizadas/química , Peroxidase do Rábano Silvestre/administração & dosagem , Peroxidase do Rábano Silvestre/química , Concentração de Íons de Hidrogênio , Modelos Moleculares , Permeabilidade
4.
Small ; 13(17)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28244215

RESUMO

In order to mimic cell organelles, artificial nanoreactors have been investigated based on polymeric vesicles with reconstituted channel proteins (outer membrane protein F) and coencapsulated enzymes horseradish peroxidase (HRP) along with a crowding agent (Ficoll or polyethylene glycol) inside the cavity. Importantly, the presence of macromolecules has a strong impact on the enzyme kinetics, but no influence on the integrity of vesicles up to certain concentrations. This particular design allows for the first time the determination of HRP kinetics inside nanoreactors with crowded milieu. The values of the Michaelis-Menten constant (K m ) measured for HRP in a confined space (encapsulated in nanoreactors) in the absence of macromolecules are ≈50% lower than in free conditions, and the presence of a crowding agent results in a further pronounced decrease. These results clearly suggest that activities of enzymes in confined spaces can be tuned by varying the concentrations of crowding compounds. The present investigation represents an advance in nanoreactor design by considering the influence of environmental factors on enzymatic performance, and it demonstrates that both encapsulation and the presence of a crowding environment increase the enzyme-substrate affinity.


Assuntos
Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo , Cinética
5.
J Org Chem ; 81(2): 595-602, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26711318

RESUMO

Naphthalene was substituted at different positions with two identical triarylamine moieties to result in species which are mixed-valence compounds in their one-electron oxidized forms. They were investigated by cyclic voltammetry, optical absorption, EPR spectroscopy, X-ray crystallography, and DFT calculations. When the two redox-active triarylamine moieties are connected to the 2- and 6-positions of the naphthalene bridge, their electronic communication is significantly stronger than when they are linked to the 1- and 5-positions, and this can be understood on the basis of a simple through-bond charge transfer pathway model. However, this model fails to explain why electronic communication between triarylamine moieties in the 1,5- and 1,8-isomers is similarly strong, indicating that through-space charge transfer pathways play an important role in the latter. In particular, charge transfer in the 1,8-isomer is likely to occur between the triarylamino C atoms in α-position to the naphthalene linker because the respective atoms are only about 3 Å apart from each other, and because they carry significant spin density in the one-electron oxidized forms of triarylamines. This particular through-space charge transfer pathway might be generally important in molecular structures based on the 1,8-disubstituted naphthalene pillaring motif.

6.
Nano Lett ; 15(11): 7596-603, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26428033

RESUMO

The development of advanced stimuli-responsive systems for medicine, catalysis, or technology requires compartmentalized reaction spaces with triggered activity. Only very few stimuli-responsive systems preserve the compartment architecture, and none allows a triggered activity in situ. We present here a biomimetic strategy to molecular transmembrane transport by engineering synthetic membranes equipped with channel proteins so that they are stimuli-responsive. Nanoreactors with triggered activity were designed by simultaneously encapsulating an enzyme inside polymer compartments, and inserting protein "gates" in the membrane. The outer membrane protein F (OmpF) porin was chemically modified with a pH-responsive molecular cap to serve as "gate" producing pH-driven molecular flow through the membrane and control the in situ enzymatic activity. This strategy provides complex reaction spaces necessary in "smart" medicine and for biomimetic engineering of artificial cells.


Assuntos
Materiais Biomiméticos/química , Membrana Celular/química , Porinas/química , Materiais Biomiméticos/farmacologia , Membrana Celular/genética , Concentração de Íons de Hidrogênio , Permeabilidade/efeitos dos fármacos , Polímeros/química
7.
Macromol Rapid Commun ; 36(21): 1929-1934, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26332688

RESUMO

Biomimetic polymer nanocompartments (polymersomes) with preserved architecture and ion-selective membrane permeability represent cutting-edge mimics of cellular compartmentalization. Here it is studied whether the membrane thickness affects the functionality of ionophores in respect to the transport of Ca2+ ions in synthetic membranes of polymersomes, which are up to 2.6 times thicker than lipid membranes (5 nm). Selective permeability toward calcium ions is achieved by proper insertion of ionomycin, and demonstrated by using specific fluorescence markers encapsulated in their inner cavities. Preservation of polymersome architecture is shown by a combination of light scattering, transmission electron microscopy, and fluorescence spectroscopy. By using a combination of stopped-flow and fluorescence spectroscopy, it is shown that ionomycin can function and transport calcium ions across polymer membranes with thicknesses in the range 10.7-13.4 nm (7.1-8.9 times larger than the size of the ionophore). Thicker membranes induce a decrease in transport, but do not block it due to the intrinsic flexibility of these synthetic membranes. The design of ion selective biomimetic nanocompartments represents a new path toward the development of cellular ion nanosensors and nano-reactors, in which calcium sensitive biomacromolecules can be triggered for specific biological functions.

8.
Biomaterials ; 53: 406-14, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25890738

RESUMO

Following a biomimetic approach, we present here polymer vesicles (polymersomes) with ion selective permeability, achieved by inserting gramicidin (gA) biopores in their membrane. Encapsulation of pH-, Na(+)- and K(+)- sensitive dyes inside the polymersome cavity was used to assess the proper insertion and functionality of gA inside the synthetic membrane. A combination of light scattering, transmission electron microscopy, and fluorescence correlation spectroscopy was used to show that neither the size, nor the morphology of the polymersomes was affected by successful insertion of gA in the polymer membrane. Interestingly, proper insertion and functionality of gA were demonstrated for membranes with thicknesses in the range 9.2-12.1 nm, which are significantly greater than membrane lipid counterparts. Both polymersomes with sizes around 100 nm and giant unilamellar vesicles (GUVs) with inserted gA exhibited efficient time response to pH- and ions and therefore are ideal candidates for designing nanoreactors or biosensors for a variety of applications in which changes in the environment, such as variations of ionic concentration or pH, are required.


Assuntos
Polímeros/química , Gramicidina/administração & dosagem , Íons , Microscopia Eletrônica de Transmissão , Permeabilidade
9.
Expert Opin Drug Deliv ; 12(9): 1527-45, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25882382

RESUMO

INTRODUCTION: Misregulation of reactive oxygen species and reactive nitrogen species by the body's antioxidant system results in oxidative stress, which is known to be associated with aging, and involved in various pathologies including cancer, neurodegenerative and cardiovascular diseases. A large variety of low-molecular-weight (LMW) antioxidant compounds and antioxidant enzymes have been proposed to alleviate oxidative stress, but their therapeutic efficacy is limited by their solubility, stability or bioavailability. In this respect, nanoscience-based systems are expected to provide more efficient mitigation of oxidative stress. AREAS COVERED: The main nanoscience-based three-dimensional (3D) supramolecular assemblies, decorated with, or entrapping antioxidant compounds, or which possess intrinsic antioxidant activity are discussed and illustrated with recent examples. Assemblies with different architectures and sizes in the nanometer range serve: i) to deliver LMW antioxidant compounds or enzymes; ii) as antioxidant systems due to their intrinsic activity; and recently iii) to provide a confined space where catalytic antioxidant reactions take place in situ (nanoreactors and artificial organelles). A few insights into the role of antioxidants in mitigating oxidative stress caused by therapeutic compounds or drug carriers are also discussed. EXPERT OPINION: Several challenges must still be overcome in the development of 3D supramolecular assemblies to efficiently fight oxidative stress. First, an improvement of the assemblies' properties and stability in biological conditions has to be addressed. Second, new systems based on the combination of biomolecules or mimics in supramolecular assemblies should provide multifunctionality, stimuli-responsiveness and targeting properties for a more efficient therapeutic effect. Third, comparative studies are necessary to evaluate these systems in a standardized manner both in vitro and in vivo.


Assuntos
Antioxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Animais , Portadores de Fármacos/química , Humanos , Solubilidade
10.
Macromol Rapid Commun ; 36(6): 507-14, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25619496

RESUMO

Polymersomes that encapsulate a hydrophilic polymer are prepared by conducting biocatalytic atom transfer radical polymerization (ATRP) in these hollow nanostructures. To this end, ATRPase horseradish peroxidase (HRP) is encapsulated into vesicles self-assembled from poly(dimethylsiloxane)-block-poly(2-methyl-2-oxazoline) (PDMS-b-PMOXA) diblock copolymers. The vesicles are turned into nanoreactors by UV-induced permeabilization with a hydroxyalkyl phenone and used to polymerize poly(ethylene glycol) methyl ether acrylate (PEGA) by enzyme-catalyzed ATRP. As the membrane of the polymersomes is only permeable for the reagents of ATRP but not for macromolecules, the polymerization occurs inside of the vesicles and fills the polymersomes with poly(PEGA), as evidenced by (1) H NMR. Dynamic and static light scattering show that the vesicles transform from hollow spheres to filled spheres during polymerization. Transmission electron microscopy (TEM) and cryo-TEM imaging reveal that the polymersomes are stable under the reaction conditions. The polymer-filled nanoreactors mimic the membrane and cytosol of cells and can be useful tools to study enzymatic behavior in crowded macromolecular environments.


Assuntos
Radicais Livres/química , Peroxidase do Rábano Silvestre/química , Catálise , Nanoestruturas/química , Polimerização , Polímeros/química
11.
J Phys Chem A ; 118(47): 11293-303, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25393481

RESUMO

A series of selenophenes with redox-active amine end-capping groups was synthesized and investigated. A combination of cyclic voltammetry, optical absorption, EPR spectroscopy, and quantum-chemical calculations based on Kohn-Sham density functional theory was used to explore charge delocalization in the monocationic mixed-valence forms of these selenophenes, and the results were compared to those obtained from analogous studies of structurally identical thiophenes. The striking finding is that the comproportionation constant (Kc) for the experimentally investigated biselenophene is more than 2 orders of magnitude lower than for its bithiophene counterpart (in CH3CN with 0.1 M TBAPF6), and the electronic coupling between the two amine end-capping groups in the mixed-valent biselenophene monocation is only roughly half as strong as in the corresponding bithiophene monocation. These are surprisingly large differences given the structural similarity between the respective biselenophene and bithiophene molecules. However, the computationally determined comproportionation constants for biselenophene and bithiophene are almost identical, and the electronic coupling in the monocationic biselenophene is only slightly smaller than that in the monocationic bithiophene. We assume that the external electric field may be responsible for the differences in monocation stabilities between experiment and computation. Our findings indicate that charge delocalization across individual selenophenes tends to be less pronounced than across individual thiophenes, and this may have important implications for long-range charge transfer across selenophene oligomers or polymers.

12.
Chem Commun (Camb) ; 50(74): 10883-6, 2014 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-25090374

RESUMO

Charge delocalization in the mixed-valent monocationic forms of phenothiazine-decorated chalcogenophenes is explored by cyclic voltammetry, optical absorption and EPR spectroscopy. Single units of furan, thiophene, selenophene and tellurophene are found to mediate electronic coupling between the phenothiazines attached to their 2- and 5-positions roughly equally well. Electronic communication seems to occur mostly through the butadiene-like backbone of the chalcogenophenes.

13.
J Am Chem Soc ; 136(36): 12607-14, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25143132

RESUMO

Many biological processes require precise regulation and synergy of proteins, and consequently involve molecular recognition and spatial constraints between biomolecules. Here, a library of poly(N-isopropylacrylamide-co-tris-nitrilotriacetic acid acrylamide) (PNTs) has been synthesized and complexed with Cu(2+) in order to serve as models for investigation of the combined effects of molecular recognition and spatial constraints in biomolecular interactions. The average distance between Cu(2+)-trisNTA binding sites in PNTs polymers was varied from 4.3 to 31.5 nm by adjusting their trisNTA contents. His tag (His6), His-tagged enhanced yellow fluorescent protein (His6-eYFP), and His6-tagged collagenase G (His6-ColG), with sizes ranging from 1 to 11 nm, were used as models to assess whether the binding ability is influenced by a cooperative topology based on molecular recognition interactions with Cu(2+)-trisNTA binding sites, and spatial constraints created by decreasing average distance between trisNTAs. His-tagged molecules bound to all PNTs polymers due to their molecular recognition interaction involving histidines and Cu(2+)-trisNTA pockets, but with a binding ability that was highly modulated by the average distance between the trisNTA binding sites. Small molecular mass molecules (His6) exhibit a high binding ability to all PNTs polymers, whereas his-tagged proteins bind to PNTs efficiently only when the average distance between trisNTA binding sites is larger than the protein dimensions.


Assuntos
Resinas Acrílicas/química , Colagenases/química , Proteínas Luminescentes/química , Resinas Acrílicas/síntese química , Colagenases/metabolismo , Cobre/química , Histidina/química , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Ligação Proteica , Termodinâmica
14.
J Phys Chem B ; 118(31): 9361-70, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-25045828

RESUMO

Stimulus-sensitive systems at the nanoscale represent ideal candidates for improving therapeutic and diagnostic approaches by producing rapid responses to the presence of specific molecules or conditions either by changing properties or by acting "on demand". Here we introduce an optimized light-sensitive nanoreactor based on encapsulation of a photosensitizer inside polymer vesicles to serve as an efficient source of reactive oxygen species (ROS) "on demand". Two types of amphiphilic block copolymers, poly(2-methyloxazoline)-block-poly(dimethylsiloxane)-block-poly(2-methyloxazoline), PMOXA-PDMS-PMOXA, and poly(N-vinylpyrrolidone)-block-poly(dimethylsiloxane)-block-poly(N-vinylpyrrolidone), PNVP-PDMS-PNVP, were used to encapsulate Rose Bengal-bovine serum albumin (RB-BSA) inside the cavity of vesicles. The difference of copolymers molecular properties (hydrophobic to hydrophilic ratio, different chemical nature of the hydrophilic block) influenced the encapsulation ability, and uptake by cells, allowing therefore a selection of the most efficient polymer system. Nanoreactors were optimized in terms of (i) size, (ii) stability, and (iii) encapsulation efficiency based on a combination of light scattering, TEM, and UV-vis spectroscopy. By illumination, encapsulated RB-BSA conjugates generated in situ ROS, which diffused through the polymer membrane to the environment of the vesicles, as proved by electron spin resonance spectroscopy (ESR). Optimum illumination conditions were obtained based on the effect of the illumination time on the amount of ROS produced in situ by the encapsulated RB-BSA conjugates. ROS diffusion monitored by ESR was dependent on the molecular weight of copolymer that influences the thickness of the polymer membrane. Upon uptake into HeLa cells our nontoxic nanoreactors acted as a Trojan horse: they produced illumination-controlled ROS in sufficient amounts to induce cell death under photodynamic therapy (PDT) conditions. Straightforward production, stability, and Trojan horse activity inside cells support our light-sensitive nanoreactors for medical applications which require ROS to be generated with precise time and space control.


Assuntos
Nanoestruturas/química , Polímeros/química , Animais , Morte Celular/efeitos dos fármacos , Morte Celular/efeitos da radiação , Preparações de Ação Retardada/química , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Luz , Microscopia Eletrônica de Transmissão , Oxazóis/química , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/química , Espécies Reativas de Oxigênio/química , Rosa Bengala/química , Espalhamento de Radiação , Soroalbumina Bovina/química , Análise Espectral
15.
Biomacromolecules ; 15(4): 1469-75, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24650106

RESUMO

Laccases (Lac) are oxidizing enzymes with a broad range of applications, for example, in soil remediation, as bleaching agent in the textile industry, and for cosmetics. Protecting the enzyme against degradation and inhibition is of great importance for many of these applications. Polymer vesicles (polymersomes) from poly(N-vinylpyrrolidone)-block-poly(dimethylsiloxane)-block-poly(N-vinylpyrrolidone) (PNVP-b-PDMS-b-PNVP) triblock copolymers were prepared and investigated as intrinsically semipermeable nanoreactors for Lac. The block copolymers allow oxygen to enter and reactive oxygen species (ROS) to leave the polymersomes. EPR spectroscopy proved that Lac can generate ROS. They could diffuse out of the polymersome and oxidize an aromatic substrate outside the vesicles. Michaelis-Menten constants Km between 60 and 143 µM and turn over numbers kcat of 0.11 to 0.18 s(-1) were determined for Lac in the nanoreactors. The molecular weight and the PDMS-to-PNVP ratio of the block copolymers influenced these apparent Michaelis-Menten parameters. Encapsulation of Lac in the polymersomes significantly protected the enzyme against enzymatic degradation and against small inhibitors: proteinase K caused 90% less degradation and the inhibitor sodium azide did not affect the enzyme's activity. Therefore, these polymer nanoreactors are an effective means to stabilize laccase.


Assuntos
Lacase/química , Lacase/metabolismo , Nanotecnologia/métodos , Povidona/análogos & derivados , Siloxanas/química , Espectroscopia de Ressonância de Spin Eletrônica , Endopeptidase K/metabolismo , Estabilidade Enzimática , Interações Hidrofóbicas e Hidrofílicas , Lacase/antagonistas & inibidores , Peso Molecular , Oxigênio/metabolismo , Povidona/síntese química , Povidona/química , Espécies Reativas de Oxigênio/metabolismo , Siloxanas/síntese química , Azida Sódica/metabolismo , Azida Sódica/farmacologia
16.
Biomacromolecules ; 14(8): 2703-12, 2013 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-23739032

RESUMO

Hemoglobin (Hb) is a promiscuous protein that not only transports oxygen, but also catalyzes several biotransformations. A novel in vitro catalytic activity of Hb is described. Bovine Hb and human erythrocytes were found to display ATRPase activity, i.e., they catalyzed the polymerization of vinyl monomers under conditions typical for atom transfer radical polymerization (ATRP). N-isopropylacrylamide (NIPAAm), poly(ethylene glycol) methyl ether acrylate (PEGA), and poly(ethylene glycol) methyl ether methacrylate (PEGMA) were polymerized using organobromine initiators and the reducing agent ascorbic acid in acidic aqueous solution. In order to avoid chain transfer from polymer radicals to Hb's cysteine residues, the accessible cysteines were blocked by a reaction with a maleimide. The formation of polymers with bromine chain ends, relatively low polydispersity indices (PDI), first order kinetics and an increase in the molecular weight of poly(PEGA) and poly(PEGMA) upon conversion indicate that control of the polymerization by Hb occurred via reversible atom transfer between the protein and the growing polymer chain. For poly(PEGA) and poly(PEGMA), the reactions proceeded with a good to moderate degree of control. Sodium dodecyl sulfate (SDS) gel electrophoresis, circular dichroism spectroscopy, and time-resolved ultraviolet-visible (UV-vis) spectroscopy revealed that the protein was stable during polymerization, and only underwent minor conformational changes. As Hb and erythrocytes are readily available, environmentally friendly, and nontoxic, their ATRPase activity is a useful tool for synthetic polymer chemistry. Moreover, this novel activity enhances the understanding of Hb's redox chemistry in the presence of organobromine compounds.


Assuntos
Ácido Ascórbico/química , Eritrócitos/química , Radicais Livres/química , Hemoglobinas/química , Resinas Acrílicas/química , Animais , Biocatálise , Bovinos , Humanos , Concentração de Íons de Hidrogênio , Cinética , Oxirredução , Polietilenoglicóis/química , Polimerização , Ácidos Polimetacrílicos/química , Polivinil/química , Estabilidade Proteica , Substâncias Redutoras/química
17.
J Am Chem Soc ; 135(24): 9204-12, 2013 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-23705790

RESUMO

Block copolymer vesicles can be turned into nanoreactors when a catalyst is encapsulated in these hollow nanostructures. However the membranes of these polymersomes are most often impermeable to small organic molecules, while applications as nanoreactor, as artificial organelles, or as drug-delivery devices require an exchange of substances between the outside and the inside of polymersomes. Here, a simple and versatile method is presented to render polymersomes semipermeable. It does not require complex membrane proteins or pose requirements on the chemical nature of the polymers. Vesicles made from three different amphiphilic block copolymers (α,ω-hydroxy-end-capped poly(2-methyl-2-oxazoline)-block-poly(dimethylsiloxane)-block-poly(2-methyl-2-oxazoline) (PMOXA-b-PDMS-b-PMOXA), α,ω-acrylate-end-capped PMOXA-b-PDMS-b-PMOXA, and poly(ethylene oxide)-block-poly(butadiene) (PEO-b-PB)) were reacted with externally added 2-hydroxy-4'-2-(hydroxyethoxy)-2-methylpropiophenone under UV-irradiation. The photoreactive compound incorporated into the block copolymer membranes independently of their chemical nature or the presence of double bonds. This treatment of polymersomes resulted in substantial increase in permeability for organic compounds while not disturbing the size and the shape of the vesicles. Permeability was assessed by encapsulating horseradish peroxidase into vesicles and measuring the accessibility of substrates to the enzyme. The permeability of photoreacted polymersomes for ABTS, AEC, pyrogallol, and TMB was determined to be between 1.9 and 38.2 nm s(-1). It correlated with the hydrophobicity of the compounds. Moreover, fluorescent dyes were released at higher rates from permeabilized polymersomes compared to unmodified ones. The permeabilized nanoreactors retained their ability to protect encapsulated biocatalysts from degradation by proteases.

18.
Chimia (Aarau) ; 67(11): 777-81, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24388228

RESUMO

Proteins are macromolecules with a great diversity of functions. By combining these biomolecules with polymers, exciting opportunities for new concepts in polymer sciences arise. This highlight exemplifies the aforementioned with current research results of our group. We review our discovery that the proteins horseradish peroxidase and hemoglobin possess ATRPase activity, i.e. they catalyze atom transfer radical polymerizations. Moreover, a permeabilization method for polymersomes is presented, where the photo-reaction of an α-hydroxyalkylphenone with block copolymer vesicles yields enzyme-containing nanoreactors. A further intriguing possibility to obtain functional nanoreactors is to enclose a polymerization catalyst into the thermosome, a protein cage from the family of chaperonins. Last but not least, fluorescent proteins are discussed as mechanoresponsive molecular sensors that report microdamages within fiber-reinforced composite materials.


Assuntos
Nanoestruturas , Polímeros/química , Proteínas/química
19.
J Phys Chem A ; 116(33): 8475-83, 2012 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-22830598

RESUMO

We present an ESR and DFT study of the interaction of cucurbiturils CB[6], CB[7], and CB[8] with di-tert-butyl nitroxide ((CH(3))(3)C)(2)NO (DTBN) and with spin adducts of 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and 2-methyl-2-nitrosopropane (MNP). The primary goal was to understand the structural parameters that determine the inclusion mechanism in the CBs using DTBN, a nitroxide with great sensitivity to the local environment. In addition, we focused on the interactions with CBs of the spin adducts DMPO/OH and MNP/CH(2)COOH generated in aqueous CH(3)COOH. A range of interactions between DTBN and CBs was identified for pH 3.2, 7, and 10. No complexation of DTBN with CB[6] was deduced in this pH range. The interaction between DTBN and CB[7] is evident at all pH values: "in" and "out" nitroxides, with (14)N hyperfine splitting, a(N), values of 15.5 and 17.1 G, respectively, were detected by ESR. Interaction of DTBN with CB[8] was also detected for all pH values, and the only species had a(N) = 16.4 G, a result that can be rationalized by an "in" nitroxide in a less hydrophobic environment compared to CB[7]. Computational studies indicated that the DTBN complex with CB[7] is thermodynamically favored compared to that in CB[8]; the orientations of the NO group are parallel to the CB[7] plane and perpendicular to the CB[8] plane (pointing toward the annulus). Addition of sodium ions led to the ESR detection of a three-component complex between CB[7], DTBN, and the cations; the ternary complex was not detected for CB[8]. The DMPO/OH spin adduct was stabilized in the presence of CB[7], but the effect on a(N) was negligible, indicating that the N-O group is located outside the CB cavity. Computational studies indicated more favorable energetics of complexation for DMPO/OH in CB[7] compared to DTBN. An increase of a(N) was detected in the presence of CB[7] for the MNP/CH(2)COOH adduct generated in CH(3)COOH, a result that was assigned to the generation of the three-component radical between the spin adduct, sodium cations, and CB[7].


Assuntos
Butanos/química , Óxidos N-Cíclicos/química , Compostos Macrocíclicos/química , Compostos Nitrosos/química , Teoria Quântica , Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres/química , Estrutura Molecular
20.
J Phys Chem B ; 115(43): 12415-21, 2011 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-21923141

RESUMO

The fragmentation of perfluorinated ionomeric membranes during fuel cell (FC) operation is studied in our laboratory by direct electron spin resonance (ESR) and by spin trapping ESR, and interpretation of the results is facilitated by the study of model compounds (MCs). The advantage of this approach is the ability to detect and identify "early events" in the fragmentation process, before the appearance of stable species that can be detected by NMR and other methods. We report a spin trapping ESR study of the fragmentation of Nafion, Aquivion, and 3M membranes in their water dispersions and of the corresponding model compounds in the presence of HO•, using 2-methyl-2-nitrosopropane (MNP) as a spin trap. Hydroxyl radicals were generated by UV irradiation of hydrogen peroxide. In the MCs the presence of both oxygen-centered radicals (OCRs) and carbon-centered radicals (CCRs) adducts as well as di-tert-butyl nitroxide radicals (DTBN, from spin trap decomposition) were detected. The presence of both OCR and CCR adducts is rationalized by the initial generation of OCRs with low stability and their transformation into the more stable CCRs. Addition of ß-cyclodextrin (ß-CD) led to a significant increase of the intensity of the MNP/OCR adducts and in one system also to the complete disappearance of the MNP/CCR adduct, results that we assign to the fast selective encapsulation of OCR adducts in the hydrophobic ß-CD host. In the membrane dispersions the presence of oxygen-centered radical (OCR) adducts and DTBN radicals have been detected; this result is rationalized by the slower rate of transformation of OCR adducts to CCR adducts in the membrane systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA