Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Geophys Res Planets ; 120(3): 495-514, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26690960

RESUMO

The Sample Analysis at Mars (SAM) instrument on board the Mars Science Laboratory Curiosity rover is designed to conduct inorganic and organic chemical analyses of the atmosphere and the surface regolith and rocks to help evaluate the past and present habitability potential of Mars at Gale Crater. Central to this task is the development of an inventory of any organic molecules present to elucidate processes associated with their origin, diagenesis, concentration, and long-term preservation. This will guide the future search for biosignatures. Here we report the definitive identification of chlorobenzene (150-300 parts per billion by weight (ppbw)) and C2 to C4 dichloroalkanes (up to 70 ppbw) with the SAM gas chromatograph mass spectrometer (GCMS) and detection of chlorobenzene in the direct evolved gas analysis (EGA) mode, in multiple portions of the fines from the Cumberland drill hole in the Sheepbed mudstone at Yellowknife Bay. When combined with GCMS and EGA data from multiple scooped and drilled samples, blank runs, and supporting laboratory analog studies, the elevated levels of chlorobenzene and the dichloroalkanes cannot be solely explained by instrument background sources known to be present in SAM. We conclude that these chlorinated hydrocarbons are the reaction products of Martian chlorine and organic carbon derived from Martian sources (e.g., igneous, hydrothermal, atmospheric, or biological) or exogenous sources such as meteorites, comets, or interplanetary dust particles. KEY POINTS: First in situ evidence of nonterrestrial organics in Martian surface sediments Chlorinated hydrocarbons identified in the Sheepbed mudstone by SAM Organics preserved in sample exposed to ionizing radiation and oxidative condition.

2.
Science ; 343(6169): 1248097, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24458648

RESUMO

Opportunity has investigated in detail rocks on the rim of the Noachian age Endeavour crater, where orbital spectral reflectance signatures indicate the presence of Fe(+3)-rich smectites. The signatures are associated with fine-grained, layered rocks containing spherules of diagenetic or impact origin. The layered rocks are overlain by breccias, and both units are cut by calcium sulfate veins precipitated from fluids that circulated after the Endeavour impact. Compositional data for fractures in the layered rocks suggest formation of Al-rich smectites by aqueous leaching. Evidence is thus preserved for water-rock interactions before and after the impact, with aqueous environments of slightly acidic to circum-neutral pH that would have been more favorable for prebiotic chemistry and microorganisms than those recorded by younger sulfate-rich rocks at Meridiani Planum.


Assuntos
Exobiologia , Meio Ambiente Extraterreno/química , Marte , Água , Bactérias , Sedimentos Geológicos , Concentração de Íons de Hidrogênio , Silicatos/análise , Silicatos/química , Astronave , Sulfatos/química
3.
Science ; 343(6169): 1245267, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24324276

RESUMO

H2O, CO2, SO2, O2, H2, H2S, HCl, chlorinated hydrocarbons, NO, and other trace gases were evolved during pyrolysis of two mudstone samples acquired by the Curiosity rover at Yellowknife Bay within Gale crater, Mars. H2O/OH-bearing phases included 2:1 phyllosilicate(s), bassanite, akaganeite, and amorphous materials. Thermal decomposition of carbonates and combustion of organic materials are candidate sources for the CO2. Concurrent evolution of O2 and chlorinated hydrocarbons suggests the presence of oxychlorine phase(s). Sulfides are likely sources for sulfur-bearing species. Higher abundances of chlorinated hydrocarbons in the mudstone compared with Rocknest windblown materials previously analyzed by Curiosity suggest that indigenous martian or meteoritic organic carbon sources may be preserved in the mudstone; however, the carbon source for the chlorinated hydrocarbons is not definitively of martian origin.


Assuntos
Exobiologia , Meio Ambiente Extraterreno/química , Hidrocarbonetos Clorados/análise , Marte , Compostos Orgânicos Voláteis/análise , Baías , Dióxido de Carbono/análise , Dióxido de Carbono/química , Sedimentos Geológicos/análise , Sedimentos Geológicos/química , Oxigênio/análise , Oxigênio/química , Sulfetos/análise , Sulfetos/química , Água/análise , Água/química
4.
Science ; 336(6081): 570-6, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22556248

RESUMO

The rover Opportunity has investigated the rim of Endeavour Crater, a large ancient impact crater on Mars. Basaltic breccias produced by the impact form the rim deposits, with stratigraphy similar to that observed at similar-sized craters on Earth. Highly localized zinc enrichments in some breccia materials suggest hydrothermal alteration of rim deposits. Gypsum-rich veins cut sedimentary rocks adjacent to the crater rim. The gypsum was precipitated from low-temperature aqueous fluids flowing upward from the ancient materials of the rim, leading temporarily to potentially habitable conditions and providing some of the waters involved in formation of the ubiquitous sulfate-rich sandstones of the Meridiani region.


Assuntos
Marte , Água , Sulfato de Cálcio , Meio Ambiente Extraterreno , Fenômenos Geológicos , Meteoroides , Silicatos , Astronave , Zinco
5.
Science ; 324(5930): 1058-61, 2009 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-19461001

RESUMO

The Mars rover Opportunity has explored Victoria crater, an approximately 750-meter eroded impact crater formed in sulfate-rich sedimentary rocks. Impact-related stratigraphy is preserved in the crater walls, and meteoritic debris is present near the crater rim. The size of hematite-rich concretions decreases up-section, documenting variation in the intensity of groundwater processes. Layering in the crater walls preserves evidence of ancient wind-blown dunes. Compositional variations with depth mimic those approximately 6 kilometers to the north and demonstrate that water-induced alteration at Meridiani Planum was regional in scope.


Assuntos
Marte , Meio Ambiente Extraterreno , Compostos Férricos , Astronave , Água
6.
Science ; 320(5879): 1063-7, 2008 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-18497295

RESUMO

Mineral deposits on the martian surface can elucidate ancient environmental conditions on the planet. Opaline silica deposits (as much as 91 weight percent SiO2) have been found in association with volcanic materials by the Mars rover Spirit. The deposits are present both as light-toned soils and as bedrock. We interpret these materials to have formed under hydrothermal conditions and therefore to be strong indicators of a former aqueous environment. This discovery is important for understanding the past habitability of Mars because hydrothermal environments on Earth support thriving microbial ecosystems.


Assuntos
Marte , Dióxido de Silício , Água , Meio Ambiente Extraterreno , Temperatura Alta , Concentração de Íons de Hidrogênio , Astronave
7.
Science ; 317(5845): 1706-9, 2007 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-17885125

RESUMO

Water has supposedly marked the surface of Mars and produced characteristic landforms. To understand the history of water on Mars, we take a close look at key locations with the High-Resolution Imaging Science Experiment on board the Mars Reconnaissance Orbiter, reaching fine spatial scales of 25 to 32 centimeters per pixel. Boulders ranging up to approximately 2 meters in diameter are ubiquitous in the middle to high latitudes, which include deposits previously interpreted as finegrained ocean sediments or dusty snow. Bright gully deposits identify six locations with very recent activity, but these lie on steep (20 degrees to 35 degrees) slopes where dry mass wasting could occur. Thus, we cannot confirm the reality of ancient oceans or water in active gullies but do see evidence of fluvial modification of geologically recent mid-latitude gullies and equatorial impact craters.


Assuntos
Marte , Água , Meio Ambiente Extraterreno , Fenômenos Geológicos , Geologia
8.
Science ; 316(5825): 738-42, 2007 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-17478719

RESUMO

Home Plate is a layered plateau in Gusev crater on Mars. It is composed of clastic rocks of moderately altered alkali basalt composition, enriched in some highly volatile elements. A coarsegrained lower unit lies under a finer-grained upper unit. Textural observations indicate that the lower strata were emplaced in an explosive event, and geochemical considerations favor an explosive volcanic origin over an impact origin. The lower unit likely represents accumulation of pyroclastic materials, whereas the upper unit may represent eolian reworking of the same pyroclastic materials.

9.
Science ; 313(5792): 1403-7, 2006 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-16959999

RESUMO

The Mars Exploration Rover Opportunity has spent more than 2 years exploring Meridiani Planum, traveling approximately 8 kilometers and detecting features that reveal ancient environmental conditions. These include well-developed festoon (trough) cross-lamination formed in flowing liquid water, strata with smaller and more abundant hematite-rich concretions than those seen previously, possible relict "hopper crystals" that might reflect the formation of halite, thick weathering rinds on rock surfaces, resistant fracture fills, and networks of polygonal fractures likely caused by dehydration of sulfate salts. Chemical variations with depth show that the siliciclastic fraction of outcrop rock has undergone substantial chemical alteration from a precursor basaltic composition. Observations from microscopic to orbital scales indicate that ancient Meridiani once had abundant acidic groundwater, arid and oxidizing surface conditions, and occasional liquid flow on the surface.


Assuntos
Marte , Ácidos , Meio Ambiente Extraterreno , Compostos Férricos , Sedimentos Geológicos , Minerais , Silicatos , Astronave , Sulfatos , Tempo , Água
10.
Nature ; 443(7107): E1-2; discussion E2, 2006 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-16957684

RESUMO

The Mars Exploration Rover Opportunity discovered sulphate-rich sedimentary rocks at Meridiani Planum on Mars, which are interpreted by McCollom and Hynek as altered volcanic rocks. However, their conclusions are derived from an incorrect representation of our depositional model, which is upheld by more recent Rover data. We contend that all the available data still support an aeolian and aqueous sedimentary origin for Meridiani bedrock.

11.
Nature ; 436(7047): 44-8, 2005 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-16001058

RESUMO

Comprehensive analyses of remote sensing data during the three-year effort to select the Mars Exploration Rover landing sites at Gusev crater and at Meridiani Planum correctly predicted the atmospheric density profile during entry and descent and the safe and trafficable surfaces explored by the two rovers. The Gusev crater site was correctly predicted to be a low-relief surface that was less rocky than the Viking landing sites but comparably dusty. A dark, low-albedo, flat plain composed of basaltic sand and haematite with very few rocks was expected and found at Meridiani Planum. These results argue that future efforts to select safe landing sites based on existing and acquired remote sensing data will be successful. In contrast, geological interpretations of the sites based on remote sensing data were less certain and less successful, which emphasizes the inherent ambiguities in understanding surface geology from remotely sensed data and the uncertainty in predicting exactly what materials will be available for study at a landing site.

12.
Nature ; 436(7047): 55-7, 2005 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-16001060

RESUMO

The small martian satellites Phobos and Deimos orbit in synchronous rotation with inclinations of only 0.01 degrees and 0.92 degrees , respectively, relative to the planet's equatorial plane. Thus, an observer at near-equatorial latitudes on Mars could occasionally observe solar eclipses by these satellites (see ref. 1, for example). Because the apparent angular diameter of the satellites is much smaller than that of the Sun, however, such events are more appropriately referred to as transits. Transit data can be used for correcting and refining the orbital ephemerides of the moons. For example, Phobos is known to exhibit a secular acceleration that is caused by tidal dissipation within Mars. Long-term, accurate measurements are needed to refine the magnitude and origin of this dissipation within the martian interior as well as to refine the predicted orbital evolution of both satellites. Here we present observations of six transits of Phobos and Deimos across the solar disk from cameras on Mars aboard the Mars Exploration Rovers Spirit and Opportunity. These are the first direct imaging observations of satellites transiting the Sun from the surface of another planet.

13.
Nature ; 436(7047): 58-61, 2005 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-16001061

RESUMO

The martian surface is a natural laboratory for testing our understanding of the physics of aeolian (wind-related) processes in an environment different from that of Earth. Martian surface markings and atmospheric opacity are time-variable, indicating that fine particles at the surface are mobilized regularly by wind. Regolith (unconsolidated surface material) at the Mars Exploration Rover Opportunity's landing site has been affected greatly by wind, which has created and reoriented bedforms, sorted grains, and eroded bedrock. Aeolian features here preserve a unique record of changing wind direction and wind strength. Here we present an in situ examination of a martian bright wind streak, which provides evidence consistent with a previously proposed formational model for such features. We also show that a widely used criterion for distinguishing between aeolian saltation- and suspension-dominated grain behaviour is different on Mars, and that estimated wind friction speeds between 2 and 3 m s(-1), most recently from the northwest, are associated with recent global dust storms, providing ground truth for climate model predictions.

14.
Science ; 306(5702): 1698-703, 2004 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-15576602

RESUMO

The Mars Exploration Rover Opportunity has investigated the landing site in Eagle crater and the nearby plains within Meridiani Planum. The soils consist of fine-grained basaltic sand and a surface lag of hematite-rich spherules, spherule fragments, and other granules. Wind ripples are common. Underlying the thin soil layer, and exposed within small impact craters and troughs, are flat-lying sedimentary rocks. These rocks are finely laminated, are rich in sulfur, and contain abundant sulfate salts. Small-scale cross-lamination in some locations provides evidence for deposition in flowing liquid water. We interpret the rocks to be a mixture of chemical and siliciclastic sediments formed by episodic inundation by shallow surface water, followed by evaporation, exposure, and desiccation. Hematite-rich spherules are embedded in the rock and eroding from them. We interpret these spherules to be concretions formed by postdepositional diagenesis, again involving liquid water.


Assuntos
Marte , Atmosfera , Evolução Planetária , Meio Ambiente Extraterreno , Compostos Férricos , Sedimentos Geológicos , Minerais , Silicatos , Astronave , Água , Vento
15.
Science ; 306(5702): 1703-9, 2004 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-15576603

RESUMO

Panoramic Camera (Pancam) images from Meridiani Planum reveal a low-albedo, generally flat, and relatively rock-free surface. Within and around impact craters and fractures, laminated outcrop rocks with higher albedo are observed. Fine-grained materials include dark sand, bright ferric iron-rich dust, angular rock clasts, and millimeter-size spheroidal granules that are eroding out of the laminated rocks. Spectra of sand, clasts, and one dark plains rock are consistent with mafic silicates such as pyroxene and olivine. Spectra of both the spherules and the laminated outcrop materials indicate the presence of crystalline ferric oxides or oxyhydroxides. Atmospheric observations show a steady decline in dust opacity during the mission. Astronomical observations captured solar transits by Phobos and Deimos and time-lapse observations of sunsets.


Assuntos
Marte , Atmosfera , Meio Ambiente Extraterreno , Compostos Férricos , Sedimentos Geológicos , Gelo , Silicatos , Astronave , Análise Espectral , Água
16.
Science ; 306(5702): 1709-14, 2004 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-15576604

RESUMO

Sedimentary rocks at Eagle crater in Meridiani Planum are composed of fine-grained siliciclastic materials derived from weathering of basaltic rocks, sulfate minerals (including magnesium sulfate and jarosite) that constitute several tens of percent of the rock by weight, and hematite. Cross-stratification observed in rock outcrops indicates eolian and aqueous transport. Diagenetic features include hematite-rich concretions and crystal-mold vugs. We interpret the rocks to be a mixture of chemical and siliciclastic sediments with a complex diagenetic history. The environmental conditions that they record include episodic inundation by shallow surface water, evaporation, and desiccation. The geologic record at Meridiani Planum suggests that conditions were suitable for biological activity for a period of time in martian history.


Assuntos
Marte , Água , Exobiologia , Meio Ambiente Extraterreno , Compostos Férricos , Sedimentos Geológicos , Vida , Minerais , Silicatos , Astronave , Análise Espectral , Sulfatos , Enxofre
17.
Science ; 306(5702): 1723-6, 2004 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-15576606

RESUMO

The soils at the Opportunity site are fine-grained basaltic sands mixed with dust and sulfate-rich outcrop debris. Hematite is concentrated in spherules eroded from the strata. Ongoing saltation exhumes the spherules and their fragments, concentrating them at the surface. Spherules emerge from soils coated, perhaps from subsurface cementation, by salts. Two types of vesicular clasts may represent basaltic sand sources. Eolian ripples, armored by well-sorted hematite-rich grains, pervade Meridiani Planum. The thickness of the soil on the plain is estimated to be about a meter. The flatness and thin cover suggest that the plain may represent the original sedimentary surface.


Assuntos
Marte , Meio Ambiente Extraterreno , Compostos Férricos , Sedimentos Geológicos , Minerais , Silicatos , Astronave , Análise Espectral , Água
18.
Science ; 306(5702): 1727-30, 2004 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-15576607

RESUMO

The Microscopic Imager on the Opportunity rover analyzed textures of soils and rocks at Meridiani Planum at a scale of 31 micrometers per pixel. The uppermost millimeter of some soils is weakly cemented, whereas other soils show little evidence of cohesion. Rock outcrops are laminated on a millimeter scale; image mosaics of cross-stratification suggest that some sediments were deposited by flowing water. Vugs in some outcrop faces are probably molds formed by dissolution of relatively soluble minerals during diagenesis. Microscopic images support the hypothesis that hematite-rich spherules observed in outcrops and soils also formed diagenetically as concretions.


Assuntos
Marte , Água , Meio Ambiente Extraterreno , Compostos Férricos , Sedimentos Geológicos , Minerais , Silicatos , Astronave
19.
Science ; 306(5702): 1730-3, 2004 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-15576608

RESUMO

The location of the Opportunity landing site was determined to better than 10-m absolute accuracy from analyses of radio tracking data. We determined Rover locations during traverses with an error as small as several centimeters using engineering telemetry and overlapping images. Topographic profiles generated from rover data show that the plains are very smooth from meter- to centimeter-length scales, consistent with analyses of orbital observations. Solar cell output decreased because of the deposition of airborne dust on the panels. The lack of dust-covered surfaces on Meridiani Planum indicates that high velocity winds must remove this material on a continuing basis. The low mechanical strength of the evaporitic rocks as determined from grinding experiments, and the abundance of coarse-grained surface particles argue for differential erosion of Meridiani Planum.


Assuntos
Marte , Meio Ambiente Extraterreno , Sedimentos Geológicos , Astronave , Vento
20.
Science ; 306(5702): 1740-5, 2004 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-15576610

RESUMO

Mossbauer spectra measured by the Opportunity rover revealed four mineralogical components in Meridiani Planum at Eagle crater: jarosite- and hematite-rich outcrop, hematite-rich soil, olivine-bearing basaltic soil, and a pyroxene-bearing basaltic rock (Bounce rock). Spherules, interpreted to be concretions, are hematite-rich and dispersed throughout the outcrop. Hematitic soils both within and outside Eagle crater are dominated by spherules and their fragments. Olivine-bearing basaltic soil is present throughout the region. Bounce rock is probably an impact erratic. Because jarosite is a hydroxide sulfate mineral, its presence at Meridiani Planum is mineralogical evidence for aqueous processes on Mars, probably under acid-sulfate conditions.


Assuntos
Compostos Férricos , Marte , Sulfatos , Meio Ambiente Extraterreno , Sedimentos Geológicos , Compostos de Ferro , Compostos de Magnésio , Minerais , Silicatos , Astronave , Espectroscopia de Mossbauer , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA