Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Science ; 383(6688): eadk4422, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38484051

RESUMO

Conditional protein degradation tags (degrons) are usually >100 amino acids long or are triggered by small molecules with substantial off-target effects, thwarting their use as specific modulators of endogenous protein levels. We developed a phage-assisted continuous evolution platform for molecular glue complexes (MG-PACE) and evolved a 36-amino acid zinc finger (ZF) degron (SD40) that binds the ubiquitin ligase substrate receptor cereblon in complex with PT-179, an orthogonal thalidomide derivative. Endogenous proteins tagged in-frame with SD40 using prime editing are degraded by otherwise inert PT-179. Cryo-electron microscopy structures of SD40 in complex with ligand-bound cereblon revealed mechanistic insights into the molecular basis of SD40's activity and specificity. Our efforts establish a system for continuous evolution of molecular glue complexes and provide ZF tags that overcome shortcomings associated with existing degrons.


Assuntos
Degrons , Evolução Molecular Direcionada , Proteólise , Ubiquitina-Proteína Ligases , Dedos de Zinco , Microscopia Crioeletrônica , Talidomida/química , Ubiquitina-Proteína Ligases/química , Ubiquitinação , Degrons/genética , Dedos de Zinco/genética , Quimera de Direcionamento de Proteólise , Evolução Molecular Direcionada/métodos , Humanos
2.
Nat Chem ; 16(2): 218-228, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38110475

RESUMO

Proteolysis-targeting chimeras (PROTACs) are molecules that induce proximity between target proteins and E3 ligases triggering target protein degradation. Pomalidomide, a widely used E3 ligase recruiter in PROTACs, can independently degrade other proteins, including zinc-finger (ZF) proteins, with vital roles in health and disease. This off-target degradation hampers the therapeutic applicability of pomalidomide-based PROTACs, requiring development of PROTAC design rules that minimize off-target degradation. Here we developed a high-throughput platform that interrogates off-target degradation and found that reported pomalidomide-based PROTACs induce degradation of several ZF proteins. We generated a library of pomalidomide analogues to understand how functionalizing different positions of the phthalimide ring, hydrogen bonding, and steric and hydrophobic effects impact ZF protein degradation. Modifications of appropriate size on the C5 position reduced off-target ZF degradation, which we validated through target engagement and proteomics studies. By applying these design principles, we developed anaplastic lymphoma kinase oncoprotein-targeting PROTACs with enhanced potency and minimal off-target degradation.


Assuntos
Proteínas , Talidomida/análogos & derivados , Ubiquitina-Proteína Ligases , Proteólise , Ubiquitina-Proteína Ligases/metabolismo , Proteínas/metabolismo , Talidomida/farmacologia
3.
bioRxiv ; 2023 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-37066279

RESUMO

Immunomodulatory drugs (IMiDs), which include thalidomide and its derivatives, have emerged as the standard of care against multiple myeloma. They function as molecular glues that bind to the E3 ligase cereblon (CRBN) and induce protein interactions with neosubstrates, including the transcription factors Ikaros (IKZF1) and Aiolos (IKZF3). The subsequent ubiquitylation and degradation of these transcription factors underlies the antiproliferative activity of IMiDs. Here, we introduce photoswitchable immunomodulatory drugs (PHOIMiDs) that can be used to degrade Ikaros and Aiolos in a light-dependent fashion. Our lead compound shows minimal activity in the dark and becomes an active degrader upon irradiation with violet light. It shows high selectivity over other transcription factors, regardless of its state, and could therefore be used to control the levels of Ikaros and Aiolos with high spatiotemporal precision.

4.
Cell Metab ; 35(5): 887-905.e11, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37075753

RESUMO

Cellular exposure to free fatty acids (FFAs) is implicated in the pathogenesis of obesity-associated diseases. However, there are no scalable approaches to comprehensively assess the diverse FFAs circulating in human plasma. Furthermore, assessing how FFA-mediated processes interact with genetic risk for disease remains elusive. Here, we report the design and implementation of fatty acid library for comprehensive ontologies (FALCON), an unbiased, scalable, and multimodal interrogation of 61 structurally diverse FFAs. We identified a subset of lipotoxic monounsaturated fatty acids associated with decreased membrane fluidity. Furthermore, we prioritized genes that reflect the combined effects of harmful FFA exposure and genetic risk for type 2 diabetes (T2D). We found that c-MAF-inducing protein (CMIP) protects cells from FFA exposure by modulating Akt signaling. In sum, FALCON empowers the study of fundamental FFA biology and offers an integrative approach to identify much needed targets for diverse diseases associated with disordered FFA metabolism.


Assuntos
Diabetes Mellitus Tipo 2 , Ácidos Graxos não Esterificados , Humanos , Ácidos Graxos não Esterificados/metabolismo , Ácidos Graxos , Transdução de Sinais , Biologia
5.
bioRxiv ; 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36865221

RESUMO

Cellular exposure to free fatty acids (FFA) is implicated in the pathogenesis of obesity-associated diseases. However, studies to date have assumed that a few select FFAs are representative of broad structural categories, and there are no scalable approaches to comprehensively assess the biological processes induced by exposure to diverse FFAs circulating in human plasma. Furthermore, assessing how these FFA- mediated processes interact with genetic risk for disease remains elusive. Here we report the design and implementation of FALCON (Fatty Acid Library for Comprehensive ONtologies) as an unbiased, scalable and multimodal interrogation of 61 structurally diverse FFAs. We identified a subset of lipotoxic monounsaturated fatty acids (MUFAs) with a distinct lipidomic profile associated with decreased membrane fluidity. Furthermore, we developed a new approach to prioritize genes that reflect the combined effects of exposure to harmful FFAs and genetic risk for type 2 diabetes (T2D). Importantly, we found that c-MAF inducing protein (CMIP) protects cells from exposure to FFAs by modulating Akt signaling and we validated the role of CMIP in human pancreatic beta cells. In sum, FALCON empowers the study of fundamental FFA biology and offers an integrative approach to identify much needed targets for diverse diseases associated with disordered FFA metabolism. Highlights: FALCON (Fatty Acid Library for Comprehensive ONtologies) enables multimodal profiling of 61 free fatty acids (FFAs) to reveal 5 FFA clusters with distinct biological effectsFALCON is applicable to many and diverse cell typesA subset of monounsaturated FAs (MUFAs) equally or more toxic than canonical lipotoxic saturated FAs (SFAs) leads to decreased membrane fluidityNew approach prioritizes genes that represent the combined effects of environmental (FFA) exposure and genetic risk for diseaseC-Maf inducing protein (CMIP) is identified as a suppressor of FFA-induced lipotoxicity via Akt-mediated signaling.

6.
bioRxiv ; 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36945568

RESUMO

Cas9 is a programmable nuclease that has furnished transformative technologies, including base editors and transcription modulators (e.g., CRISPRi/a), but several applications of these technologies, including therapeutics, mandatorily require precision control of their half-life. For example, such control can help avert any potential immunological and adverse events in clinical trials. Current genome editing technologies to control the half-life of Cas9 are slow, have lower activity, involve fusion of large response elements (> 230 amino acids), utilize expensive controllers with poor pharmacological attributes, and cannot be implemented in vivo on several CRISPR-based technologies. We report a general platform for half-life control using the molecular glue, pomalidomide, that binds to a ubiquitin ligase complex and a response-element bearing CRISPR-based technology, thereby causing the latter's rapid ubiquitination and degradation. Using pomalidomide, we were able to control the half-life of large CRISPR-based technologies (e.g., base editors, CRISPRi) and small anti-CRISPRs that inhibit such technologies, allowing us to build the first examples of on-switch for base editors. The ability to switch on, fine-tune and switch-off CRISPR-based technologies with pomalidomide allowed complete control over their activity, specificity, and genome editing outcome. Importantly, the miniature size of the response element and favorable pharmacological attributes of the drug pomalidomide allowed control of activity of base editor in vivo using AAV as the delivery vehicle. These studies provide methods and reagents to precisely control the dosage and half-life of CRISPR-based technologies, propelling their therapeutic development.

7.
Nat Cell Biol ; 24(12): 1766-1775, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36396978

RESUMO

The need to control the activity and fidelity of CRISPR-associated nucleases has resulted in a demand for inhibitory anti-CRISPR molecules. The small-molecule inhibitor discovery platforms available at present are not generalizable to multiple nuclease classes, only target the initial step in the catalytic activity and require high concentrations of nuclease, resulting in inhibitors with suboptimal attributes, including poor potency. Here we report a high-throughput discovery pipeline consisting of a fluorescence resonance energy transfer-based assay that is generalizable to contemporary and emerging nucleases, operates at low nuclease concentrations and targets all catalytic steps. We applied this pipeline to identify BRD7586, a cell-permeable small-molecule inhibitor of SpCas9 that is twofold more potent than other inhibitors identified to date. Furthermore, unlike the reported inhibitors, BRD7586 enhanced SpCas9 specificity and its activity was independent of the genomic loci, DNA-repair pathway or mode of nuclease delivery. Overall, these studies describe a general pipeline to identify inhibitors of contemporary and emerging CRISPR-associated nucleases.


Assuntos
Genômica
8.
Trends Pharmacol Sci ; 43(2): 151-161, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34952739

RESUMO

The discovery, only a decade ago, of the genome editing power of clustered regularly interspaced short palindromic repeats (CRISPR)-associated nucleases is already reinventing the therapeutic process, from how new drugs are discovered to novel ways to treat diseases. CRISPR-based screens can aid therapeutic development by quickly identifying a drug's mechanism of action and escape mutants. Additionally, CRISPR-Cas has advanced emerging ex vivo therapeutics, such as cell replacement therapies. However, Cas9 is limited as an in vivo therapeutic due to ineffective delivery, unwanted immune responses, off-target effects, unpredictable repair outcomes, and cellular stress. To address these limitations, controls that inhibit or degrade Cas9, biomolecule-Cas9 conjugates, and base editors have been developed. Herein, we discuss CRISPR-Cas systems that advance both conventional and emerging therapeutics.


Assuntos
Sistemas CRISPR-Cas , Terapia Genética , Edição de Genes , Humanos
9.
Biomater Sci ; 9(16): 5626-5639, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34254078

RESUMO

Herein, we present the engineering of a supramolecular nanomicellar system that is composed of self-assembled units of the PEGylated lithocholic acid (LCA)-docetaxel (DTX) conjugate (LCA-DTX-PEG). We tethered a short polyethylene glycol unit to LCA and used an esterase-sensitive ester linkage between DTX and LCA. The LCA-DTX-PEG conjugate formed nanomicelles (LCA-DTX-PEG NMs) with ∼160 nm hydrodynamic diameter that are sensitive to cellular esterases and maximized the release of DTX under high esterase exposure. LCA-DTX-PEG NMs were found to be effective as the parent drug in breast cancer cells by stabilizing tubulin and arresting the cells in the G2/M phase. We determined the maximum tolerated dose (MTD) and systemic and vital organ toxicity of LCA-DTX-PEG NMs in mice, rats, and rabbits. LCA-DTX-PEG NMs showed a MTD of >160 mg kg-1 and are found to be safe in comparison with their parent FDA-approved drug formulation (Taxotere® or DTX-TS) that is highly toxic. LCA-DTX-PEG NMs effectively reduced the tumor volume and increased the survival of 4T1 tumor-bearing mice with improved blood circulation time of the drug and its higher accumulation in tumor tissues. Therefore, this study highlights the potential of PEGylated bile acid-drug conjugate based nanomicelles for the development of next generation cancer therapeutics.


Assuntos
Antineoplásicos , Micelas , Animais , Antineoplásicos/uso terapêutico , Ácidos e Sais Biliares , Linhagem Celular Tumoral , Docetaxel , Portadores de Fármacos , Camundongos , Coelhos , Ratos
10.
Angew Chem Int Ed Engl ; 60(10): 5394-5399, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33258265

RESUMO

In this study, we describe the engineering of sub-100 nm nanomicelles (DTX-PC NMs) derived from phosphocholine derivative of docetaxel (DTX)-conjugated lithocholic acid (DTX-PC) and poly(ethylene glycol)-tethered lithocholic acid. Administration of DTX-PC NMs decelerate tumor progression and increase the mice survivability compared to Taxotere (DTX-TS), the FDA-approved formulation of DTX. Unlike DTX-TS, DTX-PC NMs do not cause any systemic toxicity and slow the decay rate of plasma DTX concentration in rodents and non-rodent species including non-human primates. We further demonstrate that DTX-PC NMs target demethylation of CpG islands of Sparcl1 (a tumor suppressor gene) by suppressing DNA methyltransferase activity and increase the expression of Sparcl1 that leads to tumor regression. Therefore, this unique system has the potential to improve the quality of life in cancer patients and can be translated as a next-generation chemotherapeutic.


Assuntos
Antineoplásicos/uso terapêutico , Docetaxel/uso terapêutico , Epigênese Genética/efeitos dos fármacos , Ácido Litocólico/análogos & derivados , Ácido Litocólico/uso terapêutico , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacocinética , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular Tumoral , Ilhas de CpG , Desmetilação , Progressão da Doença , Docetaxel/síntese química , Docetaxel/farmacocinética , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Feminino , Ácido Litocólico/farmacocinética , Camundongos Endogâmicos BALB C , Micelas , Neoplasias/fisiopatologia , Tensoativos/síntese química , Tensoativos/farmacocinética , Tensoativos/uso terapêutico
11.
ACS Cent Sci ; 6(12): 2228-2237, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33376784

RESUMO

Prolonged Cas9 activity can hinder genome engineering as it causes off-target effects, genotoxicity, heterogeneous genome-editing outcomes, immunogenicity, and mosaicism in embryonic editing-issues which could be addressed by controlling the longevity of Cas9. Though some temporal controls of Cas9 activity have been developed, only cumbersome systems exist for modifying the lifetime. Here, we have developed a chemogenetic system that brings Cas9 in proximity to a ubiquitin ligase, enabling rapid ubiquitination and degradation of Cas9 by the proteasome. Despite the large size of Cas9, we were able to demonstrate efficient degradation in cells from multiple species. Furthermore, by controlling the Cas9 lifetime, we were able to bias the DNA repair pathways and the genotypic outcome for both templated and nontemplated genome editing. Finally, we were able to dosably control the Cas9 activity and specificity to ameliorate the off-target effects. The ability of this system to change the Cas9 lifetime and, therefore, bias repair pathways and specificity in the desired direction allows precision control of the genome editing outcome.

12.
Sci Adv ; 6(47)2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33208361

RESUMO

Advances in treating ß cell loss include islet replacement therapies or increasing cell proliferation rate in type 1 and type 2 diabetes, respectively. We propose developing multiple proliferation-inducing prodrugs that target high concentration of zinc ions in ß cells. Unfortunately, typical two-dimensional (2D) cell cultures do not mimic in vivo conditions, displaying a markedly lowered zinc content, while 3D culture systems are laborious and expensive. Therefore, we developed the Disque Platform (DP)-a high-fidelity culture system where stem cell-derived ß cells are reaggregated into thin, 3D discs within 2D 96-well plates. We validated the DP against standard 2D and 3D cultures and interrogated our zinc-activated prodrugs, which release their cargo upon zinc chelation-so preferentially in ß cells. Through developing a reliable screening platform that bridges the advantages of 2D and 3D culture systems, we identified an effective hit that exhibits 2.4-fold increase in ß cell proliferation compared to harmine.


Assuntos
Diabetes Mellitus Tipo 2 , Pró-Fármacos , Técnicas de Cultura de Células/métodos , Proliferação de Células , Humanos , Pró-Fármacos/farmacologia , Zinco
13.
Nat Commun ; 11(1): 4043, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32792475

RESUMO

Genetically fusing protein domains to Cas9 has yielded several transformative technologies; however, the genetic modifications are limited to natural polypeptide chains at the Cas9 termini, which excludes a diverse array of molecules useful for gene editing. Here, we report chemical modifications that allow site-specific and multiple-site conjugation of a wide assortment of molecules on both the termini and internal sites of Cas9, creating a platform for endowing Cas9 with diverse functions. Using this platform, Cas9 can be modified to more precisely incorporate exogenously supplied single-stranded oligonucleotide donor (ssODN) at the DNA break site. We demonstrate that the multiple-site conjugation of ssODN to Cas9 significantly increases the efficiency of precision genome editing, and such a platform is compatible with ssODNs of diverse lengths. By leveraging the conjugation platform, we successfully engineer INS-1E, a ß-cell line, to repurpose the insulin secretion machinery, which enables the glucose-dependent secretion of protective immunomodulatory factor interleukin-10.


Assuntos
Proteína 9 Associada à CRISPR/química , Proteína 9 Associada à CRISPR/metabolismo , Engenharia Celular/métodos , Biologia Sintética/métodos , Proteína 9 Associada à CRISPR/genética , Linhagem Celular , Edição de Genes , Humanos , Sistemas de Infusão de Insulina
14.
ACS Biomater Sci Eng ; 5(9): 4148-4166, 2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-33417775

RESUMO

Cancer chemotherapy has witnessed the translation of a good number of lipid-based formulations to the clinic based on drug encapsulation strategies. Toxicities associated with the release of anticancer drugs in systemic circulation and the usage of toxic excipients in these formulations along with poor efficacy, reducing blood circulation time and ineffective tumor-targeting ability, are responsible for poor success in patient survival. However, recent advances in bioconjugation strategies for engineering of lipid drug conjugates uplifted the physicochemical, pharmacokinetic/biodistribution properties, and antitumor activities of anticancer drugs with reduced toxicity in preclinical models as compared to traditional lipid formulations. Conjugation of the anticancer drugs to amphiphilic lipid molecules allows the sustained release of the drug under perfect stimuli conditions and their amphiphilic nature helps in formation of self-assembled nanoparticles that can easily be targeted at the tumor site. In this Review, we present recent advances in the emerging class of lipid drug conjugates (LDCs) for cancer therapy focusing on their design, tunable drug release at target sites, pharmacokinetics, antitumor activity, and toxicology, and provide future directions for their translation into the clinic.

15.
Bioconjug Chem ; 28(12): 2942-2953, 2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-29083862

RESUMO

Weakly basic drugs display poor solubility and tend to precipitate in the stomach's acidic environment causing reduced oral bioavailability. Tracing of these orally delivered therapeutic agents using molecular probes is challenged due to their poor absorption in the gastrointestinal tract (GIT). Therefore, we designed a gastric pH stable bile acid derived amphiphile where Tamoxifen (as a model anticancer drug) is conjugated to lithocholic acid derived phospholipid (LCA-Tam-PC). In vitro studies suggested the selective nature of LCA-Tam-PC for cancer cells over normal cells as compared to the parent drug. Fluorescent labeled version of the conjugate (LCA-Tam-NBD-PC) displayed an increased intracellular uptake compared to Tamoxifen. We then investigated the antitumor potential, toxicity, and median survival in 4T1 tumor bearing BALB/c mice upon LCA-Tam-PC treatment. Our studies confirmed a significant reduction in the tumor volume, tumor weight, and reduced hepatotoxicity with a significant increase in median survival on LCA-Tam-PC treatment as compared to the parent drug. Pharmacokinetic and biodistribution studies using LCA-Tam-NBD-PC witnessed the enhanced gut absorption, blood circulation, and tumor site accumulation of phospholipid-drug conjugate leading to improved antitumor activity. Therefore, our studies revealed that conjugation of chemotherapeutic/imaging agents to bile acid phospholipid can provide a new platform for oral delivery and tracing of chemotherapeutic drugs.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacocinética , Diagnóstico por Imagem/métodos , Ácido Litocólico/química , Fígado/efeitos dos fármacos , Fosfolipídeos/química , Animais , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Disponibilidade Biológica , Humanos , Interações Hidrofóbicas e Hidrofílicas , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Tamoxifeno/química , Tamoxifeno/farmacocinética , Tamoxifeno/farmacologia , Tamoxifeno/toxicidade , Distribuição Tecidual
16.
Mol Pharm ; 14(8): 2649-2659, 2017 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-28665132

RESUMO

Lipid composition in general determines the drug encapsulation efficacy and release kinetics from liposomes that impact the clinical outcomes of cancer therapy. We synthesized three bile acid phospholipids by conjugating the phosphocholine headgroup to the 3'-hydroxyl group of benzylated lithocholic acid (LCA), deoxycholic acid (DCA), and cholic acid (CA); and investigated the impact of membrane rigidity on drug encapsulation efficacy, drug release kinetics, anticancer effects, and mice survival. Liposomes with a hydrodynamic diameter of 100-110 nm were subsequently developed using these phospholipids. Fluorescence-probe based quantification revealed a more fluidic nature of DCA-PC- and CA-PC-derived liposomes, whereas the LCA-PC-derived ones are rigid in nature. Doxorubicin encapsulation studies showed ∼75% encapsulation and ∼38% entrapment efficacy of doxorubicin using more fluidic DCA-PC and CA-PC derived liposomes as compared to ∼58% encapsulation and ∼18% entrapment efficacy in the case of LCA-PC derived liposomes. In vivo anticancer studies in the murine model confirmed that doxorubicin entrapped CA-PC liposomes compromise mice survival, whereas rigid drug entrapped LCA-PC-derived-liposomes increased mice survival with ∼2-fold decrease in tumor volume. Pharmacokinetic and biodistribution studies revealed an ∼1.5-fold increase in plasma drug concentration and an ∼4.0-fold rise in tumor accumulation of doxorubicin on treatment with drug entrapped LCA-PC liposomes as compared to doxorubicin alone. In summary, this study presents the impact of bile acid derived liposomes with different rigidities on drug delivery and mice survivability.


Assuntos
Ácidos e Sais Biliares/química , Doxorrubicina/química , Fosfolipídeos/química , Animais , Ácido Cólico/química , Ácido Desoxicólico/química , Portadores de Fármacos/química , Ácido Litocólico/química , Camundongos
17.
J Colloid Interface Sci ; 448: 398-406, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25746193

RESUMO

Understanding of amphiphile-membrane interactions is crucial in design and development of novel amphiphiles for drug delivery, gene therapy, and biomedical applications. Structure and physico-chemical properties of amphiphiles determine their interactions with biomembranes thereby influencing their drug delivery efficacies. Here, we unravel the interactions of bile acid derived dimeric phospholipid amphiphiles with model membranes using Laurdan-based hydration, DPH-based membrane fluidity, and differential scanning calorimetry studies. We synthesized three dimeric bile acid amphiphiles where lithocholic acid, deoxycholic acid, and cholic acid are conjugated to cholic acid phospholipid using click chemistry. Interactions of these dimeric amphiphiles with model membranes showed that these amphiphiles form different structural assemblies and molecular packing in model membranes depending on the number and position of free hydroxyl groups on bile acids. We discovered that cholic acid-cholic acid dimeric phospholipid form self-assembled aggregates in model membranes without changing membrane fluidity; whereas cholic acid-deoxycholic acid derived amphiphile induces membranes fluidity and hydration of model membranes.


Assuntos
Ácidos e Sais Biliares/química , Lipossomos/química , Fosfolipídeos/química , Tensoativos/química , Dimerização , Fluidez de Membrana , Modelos Moleculares
18.
Medchemcomm ; 6(1): 192-201, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25685308

RESUMO

We report a structure-activity relationship of lithocholic acid amphiphiles for their anticancer activities against colon cancer. We synthesized ten cationic amphiphiles differing in nature of cationic charged head groups using lithocholic acid. We observed that anticancer activities of these amphiphiles against colon cancer cell lines are contingent on nature of charged head group. Lithocholic acid based amphiphile possessing piperidine head group (LCA-PIP1 ) is ~10 times more cytotoxic as compared to its precursor. Biochemical studies revealed that enhanced activity of LCA-PIP1 as compared to lithocholic acid is due to greater activation of apoptosis.LCA-PIP1 induces sub G0 arrest and causes cleavage of caspases. A single dose of lithocholic acid-piperidine derivative is enough to reduce the tumor burden by 75% in tumor xenograft model.

19.
Nanoscale ; 6(21): 12849-55, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25227567

RESUMO

The majority of the localized drug delivery systems are based on polymeric or polypeptide scaffolds, as weak intermolecular interactions of low molecular weight hydrogelators (LMHGs, Mw <500 Da) are significantly perturbed in the presence of anticancer drugs. Here, we present l-alanine derived low molecular weight hydrogelators (LMHGs) that remain injectable even after entrapping the anticancer drug doxorubicin (DOX). These DOX containing nanoassemblies (DOX-Gel) showed promising anticancer activity in mice models. Subcutaneous injection of DOX-Gel near the tumor achieved a greater decrease in tumour load than by intravenous injection of DOX (DOX-IV), and local injection of DOX alone (DOX-Local) at the tumor site. We noticed that DOX-Gel nanocarriers are especially effective when injected during the early stage of tumor progression, and achieve a substantial decrease in tumor load in the long term.


Assuntos
Doxorrubicina/administração & dosagem , Doxorrubicina/química , Sistemas de Liberação de Medicamentos , Hidrogéis/química , Nanopartículas/química , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Corantes/química , Progressão da Doença , Feminino , Injeções Intravenosas , Camundongos , Camundongos Endogâmicos BALB C , Peso Molecular , Nanotecnologia , Transplante de Neoplasias , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Polímeros/química
20.
Eur J Med Chem ; 87: 150-8, 2014 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-25247771

RESUMO

In search of new selective anti-cancer agents, a series of sixteen novel 2-aminoimidazole-quinoline hybrid compounds (5a-5p) have been designed and synthesized regioselectively. We have characterized the compounds extensively using IR, 1D and 2D NMR Spectroscopy and mass spectrometry. The cytotoxicity studies against different cancer cell lines showed that the compound 5a (Imd-Ph) emerged as a potent cytotoxic scaffold. Imd-Ph (5a) exhibited a selective anticancer activity against human colon cancer cell line (HCT-116, DLD-1) and was found relatively non-toxic to breast cancer cells (MDA-MB-231) as well as to normal primary endothelial cells (HUVEC). Structure-activity relationship of imidazole-quinoline hybrid scaffolds revealed differential and selective toxicities exerted by the different derivatives against cancer and normal cells. Structural modification of the scaffold with library of a wide variety of substituents may lead to the development of novel selective anti-cancer agents in the future.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias do Colo/tratamento farmacológico , Desenho de Fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Imidazóis/química , Quinolinas/química , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Neoplasias do Colo/patologia , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA