Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(10): 15491-15502, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38300494

RESUMO

Vegetable waste, including mixed cabbage residue (MCR), is considered a promising raw material for bioenergy production because of its high lignocellulosic component. In this study, the pretreatment of MCR by ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate ([Emim][OAc]) was optimized based on response surface methodology. The optimal condition for MCR pretreatment was determined at 55.8 °C, with a reaction of 2.65 h and liquid-solid ratio of 4.60:1 v/w. Hydrolysis of pretreated MCR from optimal pretreatment conditions generated a maximum glucose yield of 156.65 ± 7.66 mg/g MCR. Untreated and pretreated MCRs were successfully characterized by scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The pretreated MCR exhibited increased clear pores and incomplete structure. Moreover, compared with untreated biomass, decreased lignin, decreased hemicellulose, increased surface area, and cellulose crystallinity were observed. Thus, [Emim][OAc] pretreatment is a promising alternative approach for higher glucose production from MCR.


Assuntos
Brassica , Imidazóis , Açúcares , Celulose/química , Carboidratos , Glucose
2.
Heliyon ; 9(12): e22550, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38076077

RESUMO

Due to the extreme threats as environmental and health issues caused by the petroleum-based leachable plasticizers, researchers among different domains are more interested in finding unique biodegradable plasticizers from natural sources. The present study used Nelumbo nucifera leaf to extract novel biopolymers as viable substitutes for chemical plasticizers. The biopolymers extraction was carried out through chemical means and its physico-chemical and morphological characterization were carried out to confirm its plastic nature. The polymers extracted possess a low glass transition temperature (77.17 °C), good thermal stability (230 °C), low density (0.94 g/cc), good surface roughness (34.154 µm), low crystallinity index (25.1%) and moderate crystallite size (16.36 nm). The presence of an organic polymer with specific chemical groups as olefinic alkenes, epoxide, imino/azo groups, and hydrophobic organic siloxane groups, signify that the material is a condensed phenolic derivative. Furthermore, bio-film was formulated using NLP and poly lactic acid (PLA) matrix to evaluate its plasticizing effect and film-forming ability. Variation in specific properties of film was noted after bio-plasticizer addition, where tensile strength (20.94 ± 1.5 MPa to 19.22 ± 1.3 MPa) and Young's modulus (1.462 ± 0.43 GPa to 1.025 ± 0.52 GPa) was found to be decreased whereas increased the percentage of elongation at break (26.30 ± 1.1% to 39.64 ± 1.6%). In addition, decreased glass transition temperature (Tg) (59.17 °C), good surface compatibility, and increased flexibility of NLP-PLA film in contrast to pure PLA film authorizes the plasticizing effect of bio-plasticizers on PLA. Since the extracted bio-plasticizers could be a suitable replacement to harmful synthetic plasticizers for lightweight packaging applications in bioplastics sector.

3.
Bioresour Technol ; 388: 129748, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37714493

RESUMO

The rapid expansion of industrialization and continuous population growth have caused a steady increase in energy consumption. Despite using renewable energy, such as bioethanol, to replace fossil fuels had been strongly promoted, however the outcomes were underwhelming, resulting in excessive greenhouse gases (GHG) emissions. Microalgal biochar, as a carbon-rich material produced from the pyrolysis of biomass, provides a promising solution for achieving net zero emission. By utilizing microalgal biochar, these GHG emissions can be captured and stored efficiently. It also enhances soil fertility, improves water retention, and conduct bioremediation in agriculture and environmental remediation field. Moreover, incorporating microalgal biochar into a zero-waste biorefinery could boost the employ of biomass feedstocks effectively to produce valuable bioproducts while minimizing waste. This contributes to sustainability and aligns with the concepts of a circular bioeconomy. In addition, some challenges like commercialization and standardization will be addressed in the future.

4.
Heliyon ; 9(6): e17424, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37484316

RESUMO

An alternate medium consisting of sugarcane juice (SJ) (Saccharum spp.) and chicken feather peptone (CFP) was employed for microbial synthesis of levan. SJ has considerable amounts of vital minerals, vitamins, and amino acids in addition to its major constituent, sucrose. Meanwhile, CFP is also a rich source of essential nutrients such as amino acids, micro and macro elements. Amino acids present in SJ and CFP, such as glutamic acid, arginine, aspartic acid, asparagine and elements such as Ca, Mg favoured the cell growth and levan production. In this present work, levan was produced using Bacillus subtilis MTCC 441 in five different media, namely, sucrose along with defined nutrients (M1), Sugarcane Juice without nutrients (M2), SJ with defined nutrients (M3), SJ along with chicken feather peptone (M4) and sucrose without nutrient (M5). Alternative nutrient medium using SJ and CFP (M4) showed a promising levan yield of 0.32 ± 0.01 g of levan/g of sucrose consumed, which is 64% of the theoretical levan yield possible. Levan produced was characterized using Nuclear Magnetic Resonance (NMR) and Gel Permeation Chromatography (GPC). There is a change in low molecular weight fractions of levan obtained from SJ and CFP medium compared to the defined medium. Produced levan from the composite medium exhibited strong antioxidant activity and was biocompatible when tested against endothelial cells. The substrate cost was 20% lower than the cost of defined medium. Thus, a composite medium made of SJ and CFP can serve as an alternate low-cost medium for microbial fermentation.

5.
Sci Total Environ ; 876: 162797, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-36907394

RESUMO

The increased water scarcity, depletion of freshwater resources, and rising environmental awareness are stressing for the development of sustainable wastewater treatment processes. Microalgae-based wastewater treatment has resulted in a paradigm shift in our approach toward nutrient removal and simultaneous resource recovery from wastewater. Wastewater treatment and the generation of biofuels and bioproducts from microalgae can be coupled to promote the circular economy synergistically. A microalgal biorefinery transforms microalgal biomass into biofuels, bioactive chemicals, and biomaterials. The large-scale cultivation of microalgae is essential for the commercialization and industrialization of microalgae biorefinery. However, the inherent complexity of microalgal cultivation parameters regarding physiological and illumination parameters renders it challenging to facilitate a smooth and cost-effective operation. Artificial intelligence (AI)/machine learning algorithms (MLA) offer innovative strategies for assessing, predicting, and regulating uncertainties in algal wastewater treatment and biorefinery. The current study presents a critical review of the most promising AI/MLAs that demonstrate a potential to be applied in microalgal technologies. The most commonly used MLAs include artificial neural networks, support vector machine, genetic algorithms, decision tree, and random forest algorithms. Recent developments in AI have made it possible to combine cutting-edge techniques from AI research fields with microalgae for accurate analysis of large datasets. MLAs have been extensively studied for their potential in microalgae detection and classification. However, the ML application in microalgal industries, such as optimizing microalgae cultivation for increased biomass productivity, is still in its infancy. Incorporating smart AI/ML-enabled Internet of Things (IoT) based technologies can help the microalgal industries to operate effectively with minimum resources. Future research directions are also highlighted, and some of the challenges and perspectives of AI/ML are outlined. As the world is entering the digitalized industrial era, this review provides an insightful discussion about intelligent microalgal wastewater treatment and biorefinery for researchers in the field of microalgae.


Assuntos
Microalgas , Purificação da Água , Inteligência Artificial , Biocombustíveis , Aprendizado de Máquina , Biotecnologia , Biomassa
6.
Carbohydr Polym ; 306: 120599, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36746569

RESUMO

Pretreatment with pure, mixed, and diluted deep eutectic solvents (DESs) was evaluated for its effect on Napier grass through compositional and characterization studies. The morphological changes of biomass caused by pretreatment were analyzed by FTIR and XRD. The cellulose and hemicellulose content after pretreatment using mixed DES increased and decreased 1.29- and 4.25-fold, respectively, when compared to untreated Napier grass. The crystallinity index (CrI. %) of mixed DES sample increased due to the maximum removal of hemicellulose (76 %) and delignification of 62 %. The material costs of ChCl/FA and ChCl/LA for a single run are ≈2.16 USD and ≈1.65 USD, respectively. Pure DES showed that ChCl/LA pretreatment enhanced delignification efficiency and that ChCl/FA increased hemicellulose removal. It was estimated that a single run using ChCl/LA:ChCl/FA to achieve maximum hemicellulose and lignin removal would cost approximately ≈1.89 USD. Future work will evaluate the effect of DES mixture on enzyme digestibility and ethanol production from Napier grass. HYPOTHESES: Deep eutectic solvent (DES) pretreatment studies on the fractionation of lignocellulosic biomass have grown exponentially. The use of pure and diluted DES has been reported to improve saccharification efficiency, delignification, and cellulose retention (Gundupalli et al., 2022). These studies have reported maximum lignin removal but also a lower effect on hemicellulose removal from lignocellulosic biomass. It was hypothesized that mixing two pure DESs could result in maximum removal of hemicellulose and lignin after pretreatment. To our knowledge, no studies have been performed to investigate the efficiency of pretreatment using a DES mixture and compared the outcome with pure and diluted DESs. Furthermore, it was hypothesized that using two pure DESs in a mixed form could lower the material cost for each experimental run. Process efficiency was determined by compositional, XRD, and FTIR analysis. Avenues for future research include determining glucose and ethanol yields during the enzymatic saccharification and fermentation processes.


Assuntos
Celulose , Cenchrus , Lignina , Solventes Eutéticos Profundos , Solventes , Etanol , Biomassa , Hidrólise
8.
Polymers (Basel) ; 14(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35745889

RESUMO

Pretreatment is a crucial process in a lignocellulosic biorefinery. Corncob is typically considered as a natural renewable carbon source to produce various bio-based products. This study aimed to evaluate the performance of the hydrothermal-mechanical pretreatment of corncob for biofuels and biochemical production. Corncob was first pretreated by liquid hot water (LHW) at different temperatures (140-180 °C) and duration (30, 60 min) and then subjected to centrifugal milling to produce bio-powders. To evaluate the performance of this combined pretreatment, the energy efficiency and waste generation were investigated. The results indicated that the maximum fermentable sugars (FS) were 0.488 g/g biomass obtained by LHW at 180 °C, 30 min. In order to evaluate the performance of this combined pretreatment, the energy efficiency and waste generation were 28.3 g of FS/kWh and 7.21 kg of waste/kg FS, respectively. These obtained results indicate that the combined hydrothermal-mechanical pretreatment was an effective pretreatment process to provide high energy efficiency and low waste generation to produce biofuels. In addition, the energy efficiency and waste generation will be useful indicators for process scaling-up into the industrial scale. This combined pretreatment could be a promising pretreatment technology for the production of biofuels and biochemicals from lignocellulosic valorization.

9.
Bioengineering (Basel) ; 9(3)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35324804

RESUMO

One of the major concerns for utilizing ionic liquid on an industrial scale is the cost involved in the production. Despite its proven pretreatment efficiency, expenses involved in its usage hinder its utilization. A better way to tackle this limitation could be overcome by studying the recyclability of ionic liquid. The current study has applied the Box-Behnken design (BBD) to optimize the pretreatment condition of rice straw through the usage of 1-ethyl-3-methylimidazolium acetate (EMIM-Ac) as an ionic liquid. The model predicted the operation condition with 5% solid loading at 128.4 °C for 71.83 min as an optimum pretreatment condition. Under the optimized pretreatment condition, the necessity of the best anti-solvent was evaluated among water, acetone methanol, and their combinations. The study revealed that pure methanol is the suitable choice of anti-solvent, enhancing the highest sugar yield. Recyclability of EMIM-Ac coupled with anti-solvent was conducted up to five recycles following the predicted pretreatment condition. Fermentation studies evaluated the efficacy of recycled EMIM-Ac for ethanol production with 89% more ethanol production than the untreated rice straw even after five recycles. This study demonstrates the potential of recycled ionic liquid in ethanol production, thereby reducing the production cost at the industrial level.

10.
Bioengineering (Basel) ; 9(1)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35049726

RESUMO

Ionic liquid (IL) pretreatment of lignocellulose is an efficient method for the enhancement of enzymatic saccharification. However, the remaining residues of ILs deactivate cellulase, therefore making intensive biomass washing after pretreatment necessary. This study aimed to develop the one-pot process combining IL pretreatment and enzymatic saccharification by using low-toxic choline acetate ([Ch][OAc]) and IL-tolerant bacterial cellulases. Crude cellulases produced from saline soil inhabited Bacillus sp. CBD2 and Brevibacillus sp. CBD3 were tested under the influence of 0.5-2.0 M [Ch][OAc], which showed that their activities retained at more than 95%. However, [Ch][OAc] had toxicity to CBD2 and CBD3 cultures, in which only 32.85% and 12.88% were alive at 0.5 M [Ch][OAc]. Based on the specific enzyme activities, the sugar amounts produced from one-pot processes using 1 mg of CBD2 and CBD3 were higher than that of Celluclast 1.5 L by 2.0 and 4.5 times, respectively, suggesting their potential for further application in the biorefining process of value-added products.

11.
Bioengineering (Basel) ; 8(11)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34821737

RESUMO

Wax is an organic compound found on the surface of lignocellulose biomass to protect plants from physical and biological stresses in nature. With its small mass fraction in biomass, wax has been neglected from inclusion in the design of the biorefinery process. This study investigated the interfering effect of wax in three types of lignocellulosic biomass, including rice straw (RS), Napier grass (NG), and sugarcane bagasse (SB). In this study, although small fractions of wax were extracted from RS, NG, and SB at 0.57%, 0.61%, and 1.69%, respectively, dewaxing causes changes in the plant compositions and their functional groups and promotes dissociations of lignocellulose fibrils. Additionally, dewaxing of biomass samples increased reducing sugar by 1.17-, 1.04-, and 1.35-fold in RS, NG, and SB, respectively. The ethanol yield increased by 1.11-, 1.05-, and 1.23-fold after wax removal from RS, NG, and SB, respectively. The chemical composition profiles of the waxes obtained from RS, NG, and SB showed FAME, alcohol, and alkane as the major groups. According to the conversion rate of the dewaxing process and ethanol fermentation, the wax outputs of RS, NG, and SB are 5.64, 17.00, and 6.00 kg/ton, respectively. The current gasoline price is around USD 0.903 per liter, making ethanol more expensive than gasoline. Therefore, in order to reduce the cost of ethanol in the biorefinery industry, other valuable products (such as wax) should be considered for commercialization. The cost of natural wax ranges from USD 2 to 22 per kilogram, depending on the source of the extracted wax. The wax yields obtained from RS, SB, and NG have the potential to increase profits in the biorefining process and could provide an opportunity for application in a wider range of downstream industries than just biofuels.

12.
Polymers (Basel) ; 13(16)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34451123

RESUMO

Microencapsulation of curcumin in jelly fig pectin was performed by the vacuum spray drying (VSD) technique. The VSD was advanced with a low inlet temperature of 80-90 °C and low pressure of 0.01 mPa. By the in situ cross-linking with multivalent calcium ions, jelly fig pectin produced stable curcumin encapsulated microparticles. The physiochemical characteristics of microparticles were thoroughly investigated. The results revealed that 0.75 w/w% of jelly fig pectin and inlet temperature of 90 °C could be feasible for obtaining curcumin microparticles. The VSD technique showed the best encapsulation efficiency and yield and loading efficiency was up to 91.56 ± 0.80%, 70.02 ± 1.96%, and 5.45 ± 0.14%, respectively. The curcumin was readily released into simulated gastrointestinal fluid with 95.34 ± 0.78% cumulative release in 24 h. The antioxidant activity was stable after being stored for six months and stored as a solution for seven days at room temperature before analysis. Hence, the VSD technique could be applicable for the microencapsulation of bioactive compounds such as curcumin to protect and use in the food/pharmaceutical industry.

13.
Bioresour Technol ; 339: 125596, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34298246

RESUMO

Dewaxing effects on the pretreatment, saccharification and fermentation are rarely reported due to the low abundance of wax in lignocellulose. This study aimed to investigate the effect of wax removal on saccharification and ethanol yield from lignocellulose by using Rice straw (RS), Napier grass (NG), and sugarcane bagasse (SB). The wax contents of 0.56%, 1.7%, and 0.6% were obtained from RS, NG and SB after the wax extraction, respectively. The alkaline pretreatment was applied in combination with dewaxing to decipher the synergistic effect of these treatments. Dewaxing and alkaline pretreatment of lignocellulosic biomass showed changes in the plant compositions. Removal of wax from RS, NG and SB showed significant changes in the surface morphology and functional groups. A higher yield of sugars and ethanol was observed in dewaxed and alkaline pretreated samples. The ethanol yields of 75.4%, 89.85%, and 74% from RS, NG, and SB were obtained after fermentation, respectively.


Assuntos
Etanol , Lignina , Biomassa , Fermentação , Hidrólise , Lignina/metabolismo
14.
Bioprocess Biosyst Eng ; 44(11): 2331-2344, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34195894

RESUMO

Inorganic salt pretreatment of lignocellulosic biomass has proven to be an efficient way to increase the efficiency of enzymatic saccharification. However, it is not clear that this improvement is the result of modification of the lignocellulosic substrate after pretreatment, or removal of inhibitor, or enhancement of cellulase or a combination of these events. Therefore, this study aimed to analyze the effects of inorganic salts on kinetics of cellulase enzymes (celluclast 1.5L and accellerase 1500). Two substrates rich in cellulose content [carboxymethylcellulose (CMC), avicel (AV)] and lignocellulose substrate [sugarcane bagasse (SB)] were considered. The enzymatic saccharification was carried with and without the addition of inorganic salts (NaCl and KCl) at 0.5 M and 1.0 M concentration. The kinetic parameters, Km and Vm, were determined to mechanically understand the pattern of inhibition and enhancement of inorganic salts on enzymatic saccharification. The kinetics parameters of celluclast 1.5L and accellerase 1500 for hydrolysis of CMC and AV with NaCl showed uncompetitive inhibition. Whereas, influences of KCl on both cellulase were differentiated to function in inhibition or enhancement modes when challenged with different substrates. On the other hand, enzymatic hydrolysis efficiencies of SB using both cellulases were enhanced under addition of NaCl and KCl, by increasing Vm of celluclast 1.5L from 0.303 to 0.635 mg/mL min (0.5 M KCl) and accellerase 1500 from 0.383 to 0.719 mg/mL min (1.0 M NaCl). The details of kinetic analysis in this work revealed the mechanism of inorganic salts on cellulase kinetics to be involved in substrate modification and removal of inhibitor.


Assuntos
Celulase/metabolismo , Celulose/metabolismo , Compostos Inorgânicos/química , Lignina/metabolismo , Hidrólise , Cinética , Saccharum/metabolismo , Sais/química , Especificidade por Substrato
15.
Bioresour Technol ; 323: 124619, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33406466

RESUMO

Apretreatment step forlignocelluloses is responsible to alter the complex structure which allows enhancingenzymatic accessibility and bioconversion of the materials.However, there is a gap on the methods to characterize physicalevolutions of the material throughout its pretreatment.The aim of this study is to evaluate the physical changes in rice straw (RS)pretreated with alkaline followed by grinding to produce biopowders.A hydro-textural approach was applied to evaluate the physical changes of RS pretreated byimpregnation and soaking in NaOH.The results indicated that the volume deformation increased by 110%, whilethe energy consumptiondecreased by 11.3% compared to unpretreated RS.Moreover, the cellulose content and glucose were 66.8 and 212 mg/gRS obtained by RSsoaking. Thealkaline-mechanicalpretreatment was shown asan effective process to providehigh glucosereadily converted to bioethanol.Additionally, the hydro-textural approach can be considered an alternative method for biomass structural characterization.


Assuntos
Oryza , Biomassa , Celulose , Hidrólise , Lignina
16.
J Vis Exp ; (159)2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32478744

RESUMO

Tilapia lake virus disease (TiLVD), an emerging viral disease in tilapia caused by the tilapia lake virus (TiLV), is a persistent challenge in the aquaculture industry that has resulted in the mass morbidity and mortality of tilapia in many parts of the world. An effective, rapid, and accurate diagnostic assay for TiLV infection is therefore necessary to detect the initial infection and to prevent the spread of the disease in aquaculture farming. In this study, a highly sensitive and practical reverse transcription loop-mediated isothermal amplification (RT-LAMP) method is presented to detect tilapia lake virus in fish tissue. A comparison of the RT-qPCR and RT-LAMP assays of infected samples revealed positive results in 63 (100%) and 51 (80.95%) samples, respectively. Moreover, an analysis of uninfected samples showed that all 63 uninfected tissues yielded negative results for both the RT-qPCR and RT-LAMP assays. The cross-reactivity with five pathogens in tilapia was evaluated using RT-LAMP, and all the tests showed negative results. Both the liver and mucus samples obtained from infected fish showed comparable results using the RT-LAMP method, suggesting that mucus can be used in RT-LAMP as a nonlethal assay to avoid killing fish. In conclusion, the results demonstrated that the presented RT-LAMP assay provides an effective method for TiLV detection in tilapia tissue within 1 h. The method is therefore recommended as a screening tool on farms for the rapid diagnosis of TiLV.


Assuntos
Doenças dos Peixes/virologia , RNA Viral/genética , Transcrição Reversa/genética , Tilápia/virologia , Animais , Técnicas de Amplificação de Ácido Nucleico/métodos
17.
Bioresour Technol ; 294: 122195, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31610492

RESUMO

Macaranga tanarius is a fast-growing tree species that could be potentially utilized as a biomass feedstock for biorefinery. The average productivity of M. tanarius biomass was estimated to be ~19.2 ton/ha if the above-ground biomass is harvested bi-annually. Different pretreatment approaches were investigated to increase the enzymatic digestibility of foliage and woody biomass. The results indicated that no pretreatment was required for the foliage biomass while sequential acid/alkali pretreatment was necessary for the woody biomass before enzymatic hydrolysis. For the woody biomass, the delignification was 34.5% after sequential dilute acid/alkali pretreatment. The reducing sugar yields from enzymatic hydrolysis of foliage and pretreated woody biomass were 0.31 and 0.42 g/g dry biomass, respectively. The results also showed that both hydrolysates were fermentable by lactic acid bacteria. Overall, the results suggested that M. tanarius could be a potential feedstock for biorefinery based on the findings and processes derived from this study.


Assuntos
Euphorbiaceae , Açúcares , Biomassa , Fermentação , Hidrólise
18.
Fish Shellfish Immunol ; 86: 4-13, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30419397

RESUMO

The use of probiotics in aquaculture is a practical alternative to promote animal health and disease prevention. Meanwhile, this practice can also reduce the use of prophylactic antibiotics. The purpose of this study was to identify candidate probiotics that could control pathogen populations in host's gastrointestinal (GI) tract and stimulate host immunity in shrimp aquaculture. Bacillus aryabhattai TBRC8450, a bacterial strain isolated from the environment in a shrimp farm, has an antimicrobial activity against many pathogenic strains of Vibrio harveyi and V. parahaemolyticus. Supplementation of B. aryabhattai to Pacific white shrimp (Litopenaeus vannamei) not only decreased the abundance of Vibrio populations, but also shifted the bacterial community in the shrimp GI tract. We found that supplementation of B. aryabhattai triggered shrimp innate immunity and antioxidant activities. mRNA expression of genes encoding microbial peptides and antioxidant enzymes, including C-type lectin, penaeidin-3, heat shock protein 60, thioredoxin, and ferritin, was significantly upregulated in the hepatopancreas of shrimp fed B. aryabhattai. Furthermore, phenoloxidase activity in the hemocytes and the total antioxidant activity in the plasma were increased, indicating enhanced immune and antioxidant responses at the systemic level. In contrast, supplementation of B. aryabhattai had no effect on the total hemocyte count and superoxide dismutase activity in the plasma and hepatopancreas. Importantly, a pathogen challenge test using V. harveyi 1562 showed a significant increase in survival rates of shrimp fed B. aryabhattai compared to the control group. Our findings suggest that B. aryabhattai TBRC8450 can likely be used as a probiotic to reduce the population of V. harveyi in the shrimp GI tract and to enhance shrimp innate immunity and antioxidant capacity for vibriosis resistance in shrimp aquaculture.


Assuntos
Bacillus/fisiologia , Penaeidae/microbiologia , Vibrio/fisiologia , Animais , Antioxidantes/metabolismo , Bacillus/genética , Interações entre Hospedeiro e Microrganismos , Interações Hospedeiro-Patógeno , Penaeidae/imunologia , Filogenia , Probióticos
19.
Bioprocess Biosyst Eng ; 41(4): 467-477, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29247262

RESUMO

Effective lignocellulosic biomass saccharification is one of the crucial requirements of biofuel production via fermentation process. Organic acid pretreatments have been gained much interests as one of the high potential methods for promoting enzymatic saccharification of lignocellulosic materials due to their lower hazardous properties and lower production of inhibitory by-products of fermentation than typical chemical pretreatment methods. In this study, three organic acids, including acetic acid, oxalic acid, and citric acid, were examined for improvement of enzymatic saccharification and bioethanol production from oil palm trunk biomass. Based on response surface methodology, oxalic acid pretreated biomass released the maximum reducing sugar of 144 mg/g-pretreated biomass at the optimum condition, which was higher than untreated samples for 2.30 times. The released sugar yield of oil palm trunk also corresponded to the results of FT-IR analysis, which revealed the physical modification of cellulose and hemicellulose surface structures of pretreated biomass. Nevertheless, citric acid pretreatment is the most efficient pretreatment method to improve bioethanol fermentation of Saccharomyces cerevisiae TISTR 5606 at 1.94 times higher than untreated biomass. These results highlighted the selection of organic acid pretreatment as a potential method for biofuel production from oil palm trunk feedstocks.


Assuntos
Ácidos Acíclicos/química , Arecaceae/química , Etanol/metabolismo , Caules de Planta/química , Saccharomyces cerevisiae/crescimento & desenvolvimento
20.
Electron. j. biotechnol ; 19(1): 23-28, Jan. 2016. ilus
Artigo em Inglês | LILACS | ID: lil-781166

RESUMO

Background: Lignocellulosic biomass is a renewable, abundant, and inexpensive resource for biorefining process to produce biofuel and valuable chemicals. To make the process become feasible, it requires the use of both efficient pretreatment and hydrolysis enzymes to generate fermentable sugars. Ionic liquid (IL) pretreatment has been demonstrated to be a promising method to enhance the saccharification of biomass by cellulase enzyme; however, the remaining IL in the hydrolysis buffer strongly inhibits the function of cellulase. This study aimed to isolate a potential IL-tolerant cellulase producing bacterium to be applied in biorefining process. Result: One Bacillus sp., MSL2 strain, obtained from rice paddy field soil was isolated based on screening of cellulase assay. Its cellulase enzyme was purified and fractionated using a size exclusion chromatography. The molecular weight of purified cellulose was 48 kDa as revealed by SDS-PAGE and zymogram analysis. In the presence of the IL, 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]) concentration of 1 M, the cellulase activity retained 77.7% of non-IL condition. In addition, the optimum temperature and pH of the enzyme is 50°C and pH 6.0, respectively. However, this cellulase retained its activity more than 90% at 55°C, and pH 4.0. Kinetic analysis of purified enzyme showed that the Km and Vmax were 0.8 mg/mL and 1000 μM/min, respectively. Conclusion: The characterization of cellulase produced from MSL2 strain was described here. These properties of cellulase made this bacterial strain become potential to be used in the biorefining process.


Assuntos
Bacillus/enzimologia , Celulase/isolamento & purificação , Celulase/biossíntese , Oryza , Microbiologia do Solo , Temperatura , Bacillus/metabolismo , Biomassa , Líquidos Iônicos , Biocombustíveis , Concentração de Íons de Hidrogênio , Hidrólise , Lignina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA