Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Microbiol Spectr ; 10(1): e0131121, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34985298

RESUMO

Actinobacillus pleuropneumoniae causes porcine pleuropneumonia, an important disease in the pig industry. Accurate and sensitive diagnostics such as DNA-based diagnostics are essential for preventing or responding to an outbreak. The specificity of DNA-based diagnostics depends on species-specific markers. Previously, an insertion element was found within an A. pleuropneumoniae-specific gene commonly used for A. pleuropneumoniae detection, prompting the need for additional species-specific markers. Herein, 12 marker candidates highly conserved (99 - 100% identity) among 34 A. pleuropneumoniae genomes (covering 13 serovars) were identified to be A. pleuropneumoniae-specific in silico, as these sequences are distinct from 30 genomes of 13 other Actinobacillus and problematic [Actinobacillus] species and more than 1700 genomes of other bacteria in the Pasteurellaceae family. Five marker candidates are within the apxIVA gene, a known A. pleuropneumoniae-specific gene, validating our in silico marker discovery method. Seven other A. pleuropneumoniae-specific marker candidates within the eamA, nusG, sppA, xerD, ybbN, ycfL, and ychJ genes were validated by polymerase chain reaction (PCR) to be specific to 129 isolates of A. pleuropneumoniae (covering all 19 serovars), but not to four closely related Actinobacillus species, four [Actinobacillus] species, or seven other bacterial species. This is the first study to identify A. pleuropneumoniae-specific markers through genome mining. Seven novel A. pleuropneumoniae-specific DNA markers were identified by a combination of in silico and molecular methods and can serve as additional or alternative targets for A. pleuropneumoniae diagnostics, potentially leading to better control of the disease. IMPORTANCE Species-specific markers are crucial for infectious disease diagnostics. Mutations within a marker sequence can lead to false-negative results, inappropriate treatment, and economic loss. The availability of several species-specific markers is therefore desirable. In this study, 12 DNA markers specific to A. pleuropneumoniae, a pig pathogen, were simultaneously identified. Five marker candidates are within a known A. pleuropneumoniae-specific gene. Seven novel markers can be used as additional targets in DNA-based diagnostics, which in turn can expedite disease diagnosis, assist farm management, and lead to better animal health and food security. The marker discovery strategy outlined herein requires less time, effort, and cost, and results in more markers compared with conventional methods. Identification of species-specific markers of other pathogens and corresponding infectious disease diagnostics are possible, conceivably improving health care and the economy.


Assuntos
Actinobacillus pleuropneumoniae/genética , Actinobacillus pleuropneumoniae/isolamento & purificação , Proteínas de Bactérias/genética , Patologia Molecular/métodos , Pleuropneumonia/veterinária , Reação em Cadeia da Polimerase/métodos , Doenças dos Suínos/microbiologia , Actinobacillus pleuropneumoniae/classificação , Animais , Marcadores Genéticos , Genoma Bacteriano , Pleuropneumonia/diagnóstico , Pleuropneumonia/microbiologia , Suínos , Doenças dos Suínos/diagnóstico
2.
Artigo em Inglês | MEDLINE | ID: mdl-30595742

RESUMO

To become a self-regulated learner, one needs to have a skill required to induce himself to comprehend their own cognition. In this paper, we provided a definition of Seed skill to become a self-regulated learner (S2SRL) as a basis terminology for developing our proposed framework, CREMA-Computer-Supported Meta-Reflective Learning Model via MWP in order to design an environment to encourage learners to use intrinsic comprehension of metacognitive questioning to acquire S2SRL in mathematical word problem (MWP) learning. To assess our proposed framework, we addressed these questions: (i) Can CREMA really support learner to gain S2SRL and (ii) How does it work in a practical environment? To answer these two questions, three classes of low performance students of grade 9 (total 101 students) were assigned into three different learning groups: (i) a group of students who learnt MWP with our proposed method by implementing CREMA, (ii) a group of students who learnt MWP in traditional method combining MetaQ-metacognitive questions and motivational statements, and (iii) a class of students who learnt MWP in traditional method. The result from our investigation showed that MetaQ played an important role in CREMA, while integrating computer and technology enhanced students' learning sense and empowered methodology to facilitate learning objects in the implementation of CREMA to effectively support students to gain S2SRL in MWP learning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA