Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Sci Adv ; 7(16)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33853774

RESUMO

In changing environments, cells modulate resource budgeting through distinct metabolic routes to control growth. Accordingly, the TORC1 and SNF1/AMPK pathways operate contrastingly in nutrient replete or limited environments to maintain homeostasis. The functions of TORC1 under glucose and amino acid limitation are relatively unknown. We identified a modified form of the yeast TORC1 component Kog1/Raptor, which exhibits delayed growth exclusively during glucose and amino acid limitations. Using this, we found a necessary function for Kog1 in these conditions where TORC1 kinase activity is undetectable. Metabolic flux and transcriptome analysis revealed that Kog1 controls SNF1-dependent carbon flux apportioning between glutamate/amino acid biosynthesis and gluconeogenesis. Kog1 regulates SNF1/AMPK activity and outputs and mediates a rapamycin-independent activation of the SNF1 targets Mig1 and Cat8. This enables effective glucose derepression, gluconeogenesis activation, and carbon allocation through different pathways. Therefore, Kog1 centrally regulates metabolic homeostasis and carbon utilization during nutrient limitation by managing SNF1 activity.

2.
PLoS Genet ; 16(12): e1009252, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33378328

RESUMO

Growth and starvation are considered opposite ends of a spectrum. To sustain growth, cells use coordinated gene expression programs and manage biomolecule supply in order to match the demands of metabolism and translation. Global growth programs complement increased ribosomal biogenesis with sufficient carbon metabolism, amino acid and nucleotide biosynthesis. How these resources are collectively managed is a fundamental question. The role of the Gcn4/ATF4 transcription factor has been best studied in contexts where cells encounter amino acid starvation. However, high Gcn4 activity has been observed in contexts of rapid cell proliferation, and the roles of Gcn4 in such growth contexts are unclear. Here, using a methionine-induced growth program in yeast, we show that Gcn4/ATF4 is the fulcrum that maintains metabolic supply in order to sustain translation outputs. By integrating matched transcriptome and ChIP-Seq analysis, we decipher genome-wide direct and indirect roles for Gcn4 in this growth program. Genes that enable metabolic precursor biosynthesis indispensably require Gcn4; contrastingly ribosomal genes are partly repressed by Gcn4. Gcn4 directly binds promoter-regions and transcribes a subset of metabolic genes, particularly driving lysine and arginine biosynthesis. Gcn4 also globally represses lysine and arginine enriched transcripts, which include genes encoding the translation machinery. The Gcn4 dependent lysine and arginine supply thereby maintains the synthesis of the translation machinery. This is required to maintain translation capacity. Gcn4 consequently enables metabolic-precursor supply to bolster protein synthesis, and drive a growth program. Thus, we illustrate how growth and starvation outcomes are both controlled using the same Gcn4 transcriptional outputs that function in distinct contexts.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proliferação de Células , Regulação Fúngica da Expressão Gênica , Redes Reguladoras de Genes , Genoma Fúngico , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Ribossomos/genética , Ribossomos/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Ativação Transcricional
3.
J Biol Chem ; 295(52): 18390-18405, 2020 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-33122193

RESUMO

Methionine, through S-adenosylmethionine, activates a multifaceted growth program in which ribosome biogenesis, carbon metabolism, and amino acid and nucleotide biosynthesis are induced. This growth program requires the activity of the Gcn4 transcription factor (called ATF4 in mammals), which facilitates the supply of metabolic precursors that are essential for anabolism. However, how Gcn4 itself is regulated in the presence of methionine is unknown. Here, we discover that Gcn4 protein levels are increased by methionine, despite conditions of high cell growth and translation (in which the roles of Gcn4 are not well-studied). We demonstrate that this mechanism of Gcn4 induction is independent of transcription, as well as the conventional Gcn2/eIF2α-mediated increased translation of Gcn4. Instead, when methionine is abundant, Gcn4 phosphorylation is decreased, which reduces its ubiquitination and therefore degradation. Gcn4 is dephosphorylated by the protein phosphatase 2A (PP2A); our data show that when methionine is abundant, the conserved methyltransferase Ppm1 methylates and alters the activity of the catalytic subunit of PP2A, shifting the balance of Gcn4 toward a dephosphorylated, stable state. The absence of Ppm1 or the loss of the PP2A methylation destabilizes Gcn4 even when methionine is abundant, leading to collapse of the Gcn4-dependent anabolic program. These findings reveal a novel, methionine-dependent signaling and regulatory axis. Here methionine directs the conserved methyltransferase Ppm1 via its target phosphatase PP2A to selectively stabilize Gcn4. Through this, cells conditionally modify a major phosphatase to stabilize a metabolic master regulator and drive anabolism.


Assuntos
Anabolizantes/isolamento & purificação , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteína Fosfatase 2/metabolismo , S-Adenosilmetionina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Metilação , Fosforilação , Biossíntese de Proteínas , Proteína Fosfatase 2/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais
4.
Mol Biol Cell ; 29(26): 3183-3200, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30354837

RESUMO

Methionine availability during overall amino acid limitation metabolically reprograms cells to support proliferation, the underlying basis for which remains unclear. Here we construct the organization of this methionine-mediated anabolic program using yeast. Combining comparative transcriptome analysis and biochemical and metabolic flux-based approaches, we discover that methionine rewires overall metabolic outputs by increasing the activity of a key regulatory node. This comprises the pentose phosphate pathway (PPP) coupled with reductive biosynthesis, the glutamate dehydrogenase (GDH)-dependent synthesis of glutamate/glutamine, and pyridoxal-5-phosphate (PLP)-dependent transamination capacity. This PPP-GDH-PLP node provides the required cofactors and/or substrates for subsequent rate-limiting reactions in the synthesis of amino acids and therefore nucleotides. These rate-limiting steps in amino acid biosynthesis are also induced in a methionine-dependent manner. This thereby results in a biochemical cascade establishing a hierarchically organized anabolic program. For this methionine-mediated anabolic program to be sustained, cells co-opt a "starvation stress response" regulator, Gcn4p. Collectively, our data suggest a hierarchical metabolic framework explaining how methionine mediates an anabolic switch.


Assuntos
Regulação Fúngica da Expressão Gênica , Metabolismo/genética , Metionina/metabolismo , Via de Pentose Fosfato/genética , Fosfato de Piridoxal/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proliferação de Células , Glutamato Desidrogenase/genética , Glutamato Desidrogenase/metabolismo , Ácido Glutâmico/biossíntese , Glutamina/biossíntese , Metabolismo/efeitos dos fármacos , Metionina/farmacologia , Nucleotídeos/biossíntese , Via de Pentose Fosfato/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Nucleic Acids Res ; 43(1): 295-308, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25429971

RESUMO

The gene expression state of exponentially growing Escherichia coli cells is manifested by high expression of essential and growth-associated genes and low levels of stress-related and horizontally acquired genes. An important player in maintaining this homeostasis is the H-NS-StpA gene silencing system. A Δhns-stpA deletion mutant results in high expression of otherwise-silent horizontally acquired genes, many located in the terminus-half of the chromosome, and an indirect downregulation of many highly expressed genes. The Δhns-stpA double mutant displays slow growth. Using laboratory evolution we address the evolutionary strategies that E. coli would adopt to redress this gene expression imbalance. We show that two global gene regulatory mutations-(i) point mutations inactivating the stress-responsive sigma factor RpoS or σ38 and (ii) an amplification of ∼40% of the chromosome centred around the origin of replication-converge in partially reversing the global gene expression imbalance caused by Δhns-stpA. Transcriptome data of these mutants further show a three-way link amongst the global gene regulatory networks of H-NS and σ38, as well as chromosome architecture. Increasing gene expression around the terminus of replication results in a decrease in the expression of genes around the origin and vice versa; this appears to be a persistent phenomenon observed as an association across ∼300 publicly-available gene expression data sets for E. coli. These global suppressor effects are transient and rapidly give way to more specific mutations, whose roles in reversing the growth defect of H-NS mutations remain to be understood.


Assuntos
Cromossomos Bacterianos , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Inativação Gênica , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , RNA Polimerases Dirigidas por DNA/genética , Evolução Molecular Direcionada , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Deleção de Genes , Genoma Bacteriano , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Fator sigma/genética , Estresse Fisiológico/genética , Transcrição Gênica
6.
Mol Biosyst ; 9(8): 2021-33, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23661089

RESUMO

A barrier for horizontal gene transfer is high gene expression, which is metabolically expensive. Silencing of horizontally-acquired genes in the bacterium Escherichia coli is caused by the global transcriptional repressor H-NS. The activity of H-NS is enhanced or diminished by other proteins including its homologue StpA, and Hha and YdgT. The interconnections of H-NS with these regulators and their role in silencing gene expression in E. coli are not well understood on a genomic scale. In this study, we use transcriptome sequencing to show that there is a bi-layered gene silencing system - involving the homologous H-NS and StpA - operating on horizontally-acquired genes among others. We show that H-NS-repressed genes belong to two types, termed "epistatic" and "unilateral". In the absence of H-NS, the expression of "epistatically controlled genes" is repressed by StpA, whereas that of "unilaterally controlled genes" is not. Epistatic genes show a higher tendency to be non-essential and recently acquired, when compared to unilateral genes. Epistatic genes reach much higher expression levels than unilateral genes in the absence of the silencing system. Finally, epistatic genes contain more high affinity H-NS binding motifs than unilateral genes. Therefore, both the DNA binding sites of H-NS as well as the function of StpA as a backup system might be selected for silencing highly transcribable genes.


Assuntos
Proteínas de Ligação a DNA/genética , Epistasia Genética , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Proteínas de Fímbrias/genética , Regulação Bacteriana da Expressão Gênica , Inativação Gênica , Genoma Bacteriano , Chaperonas Moleculares/genética , Sítios de Ligação , Proteínas de Ligação a DNA/metabolismo , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Fímbrias/metabolismo , Transferência Genética Horizontal , Chaperonas Moleculares/metabolismo , Ligação Proteica , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Análise de Sequência de DNA , Transcrição Gênica , Transcriptoma
7.
PLoS One ; 8(3): e60013, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23544121

RESUMO

Staphylococcus aureus is a major human pathogen, first recognized as a leading cause of hospital-acquired infections. Community-associated S. aureus (CA-SA) pose a greater threat due to increase in severity of infection and disease among children and healthy adults. CA-SA strains in India are genetically diverse, among which is the sequence type (ST) 772, which has now spread to Australia, Europe and Japan. Towards understanding the genetic characteristics of ST772, we obtained draft genome sequences of five relevant clinical isolates and studied the properties of their PVL-carrying prophages, whose presence is a defining hallmark of CA-SA. We show that this is a novel prophage, which carries the structural genes of the hlb-carrying prophage and includes the sea enterotoxin. This architecture probably emerged early within the ST772 lineage, at least in India. The sea gene, unique to ST772 PVL, despite having promoter sequence characteristics typical of low expression, appears to be highly expressed during early phase of growth in laboratory conditions. We speculate that this might be a consequence of its novel sequence context. The crippled nature of the hlb-converting prophage in ST772 suggests that widespread mobility of the sea enterotoxin might be a selective force behind its 'transfer' to the PVL prophage. Wild type ST772 strains induced strong proliferative responses as well as high cytotoxic activity against neutrophils, likely mediated by superantigen SEA and the PVL toxin respectively. Both proliferation and cytotoxicity were markedly reduced in a cured ST772 strain indicating the impact of the phage on virulence. The presence of SEA alongside the genes for the immune system-modulating PVL toxin may contribute to the success and virulence of ST772.


Assuntos
Toxinas Bacterianas/metabolismo , Enterotoxinas/metabolismo , Exotoxinas/metabolismo , Genoma Bacteriano/genética , Leucocidinas/metabolismo , Prófagos/metabolismo , Análise de Sequência de DNA , Staphylococcus aureus/genética , Staphylococcus aureus/virologia , Toxinas Bacterianas/genética , Sequência de Bases , Enterotoxinas/genética , Exotoxinas/genética , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Humanos , Índia , Leucocidinas/genética , Dados de Sequência Molecular , Prófagos/ultraestrutura , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Esfingomielina Fosfodiesterase/genética , Esfingomielina Fosfodiesterase/metabolismo , Staphylococcus aureus/isolamento & purificação , Staphylococcus aureus/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA