Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(41): e2408469121, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39348541

RESUMO

Despite much research, considerable data suggest that influenza virus remains a serious health problem because i) the effectiveness of current vaccines ranges only from 19% to 60%, ii) available therapies remain ineffective in advanced stages of disease, iii) death rates vary between 25,000 and 72,000/year in the United States, and iv) avian influenza strains are now being transmitted to dairy cattle that in turn are infecting humans. To address these concerns, we have developed zanDR, a bispecific small molecule that binds and inhibits viral neuraminidase expressed on both free virus and virus-infected cells and recruits naturally occurring anti-rhamnose and anti-dinitrophenyl (DNP) antibodies with rhamnose and DNP haptens. Because the neuraminidase inhibition replicates the chemotherapeutic mechanism of zanamivir and oseltamivir, while rhamnose and DNP recruit endogenous antibodies much like an anti-influenza vaccine, zanDR reproduces most of the functions of current methods of protection against influenza virus infections. Importantly, studies on cells in culture demonstrate that both of the above protective mechanisms remain highly functional in the zanDR conjugate, while studies in lethally infected mice with advanced-stage disease establish that a single intranasal dose of zanDR not only yields 100% protection but also reduces lung viral loads faster and ~1,000× more thoroughly than current antiviral therapies. Since zanDR also lowers secretion of proinflammatory cytokines and protects against virus-induced damage to the lungs better than current therapies, we suggest that combining an immunotherapy with a chemotherapy in single pharmacological agent constitutes a promising approach for treating the more challenging forms of influenza.


Assuntos
Infecções por Orthomyxoviridae , Animais , Camundongos , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/virologia , Humanos , Antivirais/farmacologia , Influenza Humana/imunologia , Influenza Humana/tratamento farmacológico , Influenza Humana/prevenção & controle , Neuraminidase/imunologia , Neuraminidase/antagonistas & inibidores , Cães , Feminino , Camundongos Endogâmicos BALB C , Anticorpos Antivirais/imunologia
2.
J Med Chem ; 67(14): 11827-11840, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39013156

RESUMO

Fibroblast activation protein (FAP) has attracted considerable attention as a possible target for the radiotherapy of solid tumors. Unfortunately, initial efforts to treat solid tumors with FAP-targeted radionuclides have yielded only modest clinical responses, suggesting that further improvements in the molecular design of FAP-targeted radiopharmaceutical therapies (RPT) are warranted. In this study, we report several advances on the previously described FAP6 radioligand that increase tumor retention and accelerate healthy tissue clearance. Seven FAP6 derivatives with different linkers or albumin binders were synthesized, radiolabeled, and investigated for their effects on binding and cellular uptake. The radioligands were then characterized in 4T1 tumor-bearing Balb/c mice using both single-photon emission computed tomography (SPECT) and ex vivo biodistribution analyses to identify the conjugate with the best tumor retention and tumor-to-healthy organ ratios. The results reveal an optimized FAP6 radioligand that exhibits efficacy and safety properties that potentially justify its translation into the clinic.


Assuntos
Endopeptidases , Gelatinases , Proteínas de Membrana , Camundongos Endogâmicos BALB C , Compostos Radiofarmacêuticos , Serina Endopeptidases , Tomografia Computadorizada de Emissão de Fóton Único , Animais , Endopeptidases/metabolismo , Camundongos , Distribuição Tecidual , Proteínas de Membrana/metabolismo , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/farmacocinética , Compostos Radiofarmacêuticos/farmacologia , Compostos Radiofarmacêuticos/uso terapêutico , Gelatinases/metabolismo , Feminino , Serina Endopeptidases/metabolismo , Linhagem Celular Tumoral , Humanos , Ligantes
3.
J Nucl Med ; 65(8): 1257-1263, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38871387

RESUMO

Because of upregulated expression on cancer-associated fibroblasts, fibroblast activation protein (FAP) has emerged as an attractive biomarker for the imaging and therapy of solid tumors. Although many FAP ligands have already been developed for radiopharmaceutical therapies (RPTs), most suffer from inadequate tumor uptake, insufficient tumor residence times, or off-target accumulation in healthy tissues, suggesting a need for further improvements. Methods: A new FAP-targeted RPT with a novel ligand (FAP8-PEG3-IP-DOTA) was designed by combining the desirable features of several previous ligand-targeted RPTs. Uptake and retention of [111In]In or [177Lu]Lu-FAP8-PEG3-IP-DOTA were assessed in KB, HT29, MDA-MB-231, and 4T1 murine tumor models by radioimaging or ex vivo biodistribution analyses. Radiotherapeutic potencies and gross toxicities were also investigated by monitoring tumor growth, body weight, and tissue damage in tumor-bearing mice. Results: FAP8-PEG3-IP-DOTA exhibited high affinity (half-maximal inhibitory concentration, 1.6 nM) and good selectivity for FAP relative to its closest homologs, prolyl oligopeptidase (half-maximal inhibitory concentration, ∼14.0 nM) and dipeptidyl peptidase-IV (half-maximal inhibitory concentration, ∼860 nM). SPECT/CT scans exhibited high retention in 2 different solid tumor models and minimal uptake in healthy tissues. Quantitative biodistribution analyses revealed tumor-to-healthy-tissue ratios of more than 5 times for all major organs, and live animal studies demonstrated 65%-93% suppression of tumor growth in all 4 models tested, with minimal or no evidence of systemic toxicity. Conclusion: We conclude that [177Lu]Lu-FAP8-PEG3-IP-DOTA constitutes a promising and safe RPT candidate for FAPα-targeted radionuclide therapy of solid tumors.


Assuntos
Endopeptidases , Gelatinases , Proteínas de Membrana , Compostos Radiofarmacêuticos , Serina Endopeptidases , Animais , Camundongos , Compostos Radiofarmacêuticos/uso terapêutico , Compostos Radiofarmacêuticos/farmacocinética , Gelatinases/metabolismo , Humanos , Linhagem Celular Tumoral , Serina Endopeptidases/metabolismo , Proteínas de Membrana/metabolismo , Distribuição Tecidual , Feminino , Desenho de Fármacos , Lutécio/uso terapêutico , Neoplasias/radioterapia , Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo , Compostos Heterocíclicos com 1 Anel/química , Compostos Heterocíclicos com 1 Anel/uso terapêutico , Terapia de Alvo Molecular , Radioisótopos
4.
Mol Imaging Biol ; 26(4): 603-615, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38594545

RESUMO

PURPOSE: We recently developed an optical instrument to non-invasively detect fluorescently labeled circulating tumor cells (CTCs) in mice called 'Diffuse in vivo Flow Cytometry' (DiFC). OTL38 is a folate receptor (FR) targeted near-infrared (NIR) contrast agent that is FDA approved for use in fluorescence guided surgery of ovarian and lung cancer. In this work, we investigated the use OTL38 for in vivo labeling and detection of FR + CTCs with DiFC. PROCEDURES: We tested OTL38 labeling of FR + cancer cell lines (IGROV-1 and L1210A) as well as FR- MM.1S cells in suspensions of Human Peripheral Blood Mononuclear cells (PBMCs) in vitro. We also tested OTL38 labeling and NIR-DIFC detection of FR + L1210A cells in blood circulation in nude mice in vivo. RESULTS: 62% of IGROV-1 and 83% of L1210A were labeled above non-specific background levels in suspensions of PBMCs in vitro compared to only 2% of FR- MM.1S cells. L1210A cells could be labeled with OTL38 directly in circulation in vivo and externally detected using NIR-DiFC in mice with low false positive detection rates. CONCLUSIONS: This work shows the feasibility of labeling CTCs in vivo with OTL38 and detection with DiFC. Although further refinement of the DiFC instrument and signal processing algorithms and testing with other animal models is needed, this work may eventually pave the way for human use of DiFC.


Assuntos
Camundongos Nus , Células Neoplásicas Circulantes , Animais , Células Neoplásicas Circulantes/patologia , Humanos , Linhagem Celular Tumoral , Coloração e Rotulagem , Feminino , Camundongos , Citometria de Fluxo , Leucócitos Mononucleares
5.
Front Immunol ; 15: 1354735, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384467

RESUMO

Folate receptors can perform folate transport, cell adhesion, and/or transcription factor functions. The beta isoform of the folate receptor (FRß) has attracted considerable attention as a biomarker for immunosuppressive macrophages and myeloid-derived suppressor cells, however, its role in immunosuppression remains uncharacterized. We demonstrate here that FRß cannot bind folate on healthy tissue macrophages, but does bind folate after macrophage incubation in anti-inflammatory cytokines or cancer cell-conditioned media. We further show that FRß becomes functionally active following macrophage infiltration into solid tumors, and we exploit this tumor-induced activation to target a toll-like receptor 7 agonist specifically to immunosuppressive myeloid cells in solid tumors without altering myeloid cells in healthy tissues. We then use single-cell RNA-seq to characterize the changes in gene expression induced by the targeted repolarization of tumor-associated macrophages and finally show that their repolarization not only changes their own phenotype, but also induces a proinflammatory shift in all other immune cells of the same tumor mass, leading to potent suppression of tumor growth. Because this selective reprogramming of tumor myeloid cells is accompanied by no systemic toxicity, we propose that it should constitute a safe method to reprogram the tumor microenvironment.


Assuntos
Receptor 2 de Folato , Neoplasias , Humanos , Microambiente Tumoral , Neoplasias/metabolismo , Macrófagos , Ácido Fólico/metabolismo
6.
J Nucl Med ; 64(5): 759-766, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37116911

RESUMO

Fibroblast activation protein (FAP) has received increasing attention as an oncologic target because of its prominent expression in solid tumors but virtual absence from healthy tissues. Most radioligand therapies (RLTs) targeting FAP, however, suffer from inadequate tumor retention or clearance from healthy tissues. Herein we report a FAP-targeted RLT comprising an FAP6 ligand conjugated to DOTA and an albumin binder (4-p-iodophenylbutyric acid, or IP) for enhanced pharmacokinetics. We evaluated the performance of the resulting FAP6-IP-DOTA conjugate in 4 tumor models, 3 of which express FAP only on cancer-associated fibroblasts, that is, analogously to human tumors. Methods: Single-cell RNA-sequencing data were analyzed from 34 human breast, ovarian, colorectal, and lung cancers to quantify FAP-overexpressing cells. FAP6-DOTA conjugates were synthesized with or without an albumin binder (IP) and investigated for binding to human FAP-expressing cells. Accumulation of 111In- or 177Lu-labeled conjugates in KB, HT29, U87MG, and 4T1 murine tumors was also assessed by radioimaging or biodistribution analyses. Radiotherapeutic potency was quantitated by measuring tumor volumes versus time. Results: Approximately 5% of all cells in human tumors overexpressed FAP (cancer-associated fibroblasts comprised ∼77% of this FAP-positive subpopulation, whereas ∼2% were cancer cells). FAP6 conjugates bound to FAP-expressing cells with high affinity (dissociation constant, ∼1 nM). 177Lu-FAP6-IP-DOTA achieved an 88-fold higher tumor dose than 177Lu-FAP6-DOTA and improved all tumor-to-healthy-organ ratios. Single doses of 177Lu-FAP6-IP-DOTA suppressed tumor growth by about 45% in all tested tumor models without causing reproducible toxicities. Conclusion: We conclude that 177Lu-FAP6-IP-DOTA constitutes a promising candidate for FAP-targeted RLT of solid tumors.


Assuntos
Albuminas , Fibroblastos , Humanos , Animais , Camundongos , Distribuição Tecidual , Linhagem Celular Tumoral
7.
Small ; 19(21): e2204956, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36840671

RESUMO

Accurate delineation of gross tumor volumes remains a barrier to radiotherapy dose escalation and boost dosing in the treatment of solid tumors, such as prostate cancer. Magnetic resonance imaging (MRI) of tumor targets has the power to enable focal dose boosting, particularly when combined with technological advances such as MRI-linear accelerator. Fibroblast activation protein (FAP) is overexpressed in stromal components of >90% of epithelial carcinomas. Herein, the authors compare targeted MRI of prostate specific membrane antigen (PSMA) with FAP in the delineation of orthotopic prostate tumors. Control, FAP, and PSMA-targeting iron oxide nanoparticles were prepared with modification of a lymphotropic MRI agent (FerroTrace, Ferronova). Mice with orthotopic LNCaP tumors underwent MRI 24 h after intravenous injection of nanoparticles. FAP and PSMA nanoparticles produced contrast enhancement on MRI when compared to control nanoparticles. FAP-targeted MRI increased the proportion of tumor contrast-enhancing black pixels by 13%, compared to PSMA. Analysis of changes in R2 values between healthy prostates and LNCaP tumors indicated an increase in contrast-enhancing pixels in the tumor border of 15% when targeting FAP, compared to PSMA. This study demonstrates the preclinical feasibility of PSMA and FAP-targeted MRI which can enable targeted image-guided focal therapy of localized prostate cancer.


Assuntos
Nanopartículas , Neoplasias da Próstata , Masculino , Humanos , Animais , Camundongos , Próstata , Imageamento por Ressonância Magnética , Fibroblastos
8.
Sci Rep ; 12(1): 8555, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35595733

RESUMO

Retrieval of circulating tumor cells (CTC) has proven valuable for assessing a patient's cancer burden, evaluating response to therapy, and analyzing which drug might treat a cancer best. Although most isolation methods retrieve CTCs based on size, shape, or capture by tumor-specific antibodies, we explore here the use of small molecule tumor-specific ligands linked to magnetic beads for CTC capture. We have designed folic acid-biotin conjugates with different linkers for the capture of folate receptor (FR) + tumor cells spiked into whole blood, and application of the same technology to isolate FR + CTCs from the peripheral blood of both tumor-bearing mice and non-small cell lung patients. We demonstrate that folic acid linked via a rigid linker to a flexible PEG spacer that is in turn tethered to a magnetic bead enables optimal CTC retrieval, reaching nearly 100% capture when 100 cancer cells are spiked into 1 mL of aqueous buffer and ~ 90% capture when the same quantity of cells is diluted into whole blood. In a live animal model, the same methodology is shown to efficiently retrieve CTCs from tumor-bearing mice, yielding cancer cell counts that are proportional to total tumor burden. More importantly, the same method is shown to collect ~ 29 CTCs/8 mL peripheral blood from patients with non-small cell lung cancer. Since the ligand-presentation strategy optimized here should also prove useful in targeting other nanoparticles to other cells, the methods described below should have general applicability in the design of nanoparticles for cell-specific targeting.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Células Neoplásicas Circulantes , Animais , Contagem de Células , Linhagem Celular Tumoral , Separação Celular/métodos , Ácido Fólico , Humanos , Ligantes , Camundongos , Peso Molecular , Células Neoplásicas Circulantes/patologia
9.
J Mater Chem B ; 10(12): 2038-2046, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35255116

RESUMO

Tumor-targeted fluorescent dyes have been shown to significantly improve a surgeon's ability to locate and resect occult malignant lesions, thereby enhancing a patient's chances of long term survival. Although several tumor-targeted fluorescent dyes have been developed for imaging specific subsets of human cancers, no tumor-targeted dye has been designed that can image all cancer types. Based on observations that fibroblast activation protein (FAP) is upregulated on cancer-associated fibroblasts (CAFs) that infiltrate essentially all solid tumors, we have undertaken to develop a FAP-targeted fluorescent dye that can image CAFs without accumulating in healthy cells or fibroblasts. We report here that FTL-S-S0456, a novel FAP-targeted near infrared dye that binds FAP with high affinity (∼12 nM) and specificity (>5000-fold over PREP and DPP-IV), concentrates in all seven solid tumor types examined, yielding fluorescence images with high tumor to background ratios that persist for several days. We conclude that FTL-S-S0456 constitutes an excellent ligand-targeted near infrared dye that enables intra-operative imaging of most if not all solid tumors.


Assuntos
Corantes Fluorescentes , Neoplasias , Linhagem Celular Tumoral , Fibroblastos/metabolismo , Fluorescência , Corantes Fluorescentes/metabolismo , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/cirurgia , Proteínas
10.
Front Immunol ; 13: 819163, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35185910

RESUMO

Non-invasive imaging modalities constitute an increasingly important tool in diagnostic and therapy response monitoring of patients with autoimmune diseases, including rheumatoid arthritis (RA). In particular, macrophage imaging with positron emission tomography (PET) using novel radiotracers based on differential expression of plasma membrane proteins and functioning of cellular processes may be suited for this. Over the past decade, selective expression of folate receptor ß (FRß), a glycosylphosphatidylinositol-anchored plasma membrane protein, on myeloid cells has emerged as an attractive target for macrophage imaging by exploiting the high binding affinity of folate-based PET tracers. This work discusses molecular, biochemical and functional properties of FRß, describes the preclinical development of a folate-PET tracer and the evaluation of this tracer in a translational model of arthritis for diagnostics and therapy-response monitoring, and finally the first clinical application of the folate-PET tracer in RA patients with active disease. Consequently, folate-based PET tracers hold great promise for macrophage imaging in a variety of (chronic) inflammatory (autoimmune) diseases beyond RA.


Assuntos
Artrite Reumatoide/metabolismo , Receptor 2 de Folato/metabolismo , Macrófagos/metabolismo , Animais , Artrite Reumatoide/diagnóstico por imagem , Artrite Reumatoide/tratamento farmacológico , Ácido Fólico/metabolismo , Antagonistas do Ácido Fólico/farmacologia , Antagonistas do Ácido Fólico/uso terapêutico , Humanos , Tomografia por Emissão de Pósitrons
11.
Angew Chem Int Ed Engl ; 61(15): e202113341, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35088497

RESUMO

Although chimeric antigen receptor (CAR) T cells have demonstrated significant promise in suppressing hematopoietic cancers, their applications in treating solid tumors have been limited by onset of CAR T cell exhaustion that accompanies continuous CAR T cell exposure to tumor antigen. To address this limitation, we have exploited the abilities of recently designed universal CARs to bind fluorescein and internalize a fluorescein-TLR7 agonist conjugate by CAR-mediated endocytosis. We demonstrate here that anti-fluorescein CAR-mediated uptake of a fluorescein-TLR7-3 conjugate can reactivate exhausted CAR T cells, leading to dramatic reduction in T cell exhaustion markers (PD-1+ Tim-3+ ) and shrinkage of otherwise resistant tumors without inducing systemic activation of the immune system. We conclude that CAR T cell exhaustion can be reversed by administration of a CAR-targeted TLR7 agonist, thereby enabling the CAR T cells to successfully treat solid tumors without incurring the systemic toxicity that commonly accompanies administration of nontargeted TLR7 agonists.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Antígenos de Neoplasias , Fluoresceína/metabolismo , Humanos , Imunoterapia Adotiva , Neoplasias/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T , Receptor 7 Toll-Like/metabolismo
12.
Molecules ; 26(12)2021 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-34205289

RESUMO

The inadvertent severing of a ureter during surgery occurs in as many as 4.5% of colorectal surgeries. To help prevent this issue, several near-infrared (NIR) dyes have been developed to assist surgeons with identifying ureter location. However, the majority of these dyes exhibit at least some issue that precludes their widespread usage such as high levels of uptake in other tissues, overlapping emission wavelengths with other NIR dyes used for other fluorescence-guided surgeries, and/or rapid excretion times through the ureters. To overcome these limitations, we have synthesized and characterized the spectral properties and biodistribution of a new series of PEGylated UreterGlow derivatives. The most promising dye, UreterGlow-11 was shown to almost exclusively excrete through the kidneys/ureters with detectable fluorescence observed for at least 12 h. Additionally, while the excitation wavelength is similar to that of other NIR dyes used for cancer resections, the emission is shifted by ~30 nm allowing for discrimination between the different fluorescence-guided surgery probes. In conclusion, these new UreterGlow dyes show promising optical and biodistribution characteristics and are good candidates for translation into the clinic.


Assuntos
Abdome/cirurgia , Imagem Óptica/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Ureter/cirurgia , Animais , Fluorescência , Corantes Fluorescentes/metabolismo , Humanos , Rim/cirurgia , Camundongos , Distribuição Tecidual/fisiologia , Ureter/metabolismo
13.
Bioconjug Chem ; 32(8): 1548-1553, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34161726

RESUMO

The last step in influenza virus replication involves the assembly of viral components on the infected cell's plasma membrane followed by budding of intact virus from the host cell surface. Because viral neuraminidase and hemagglutinin are both inserted into the host cell's membrane during this process, influenza virus-infected cells are distinguished from uninfected cells by the presence of viral neuraminidase and hemagglutinin on their cell surfaces. In an effort to exploit this difference in cell surface markers for development of diagnostic and therapeutic agents, we have modified an influenza neuraminidase inhibitor, zanamivir, for targeting of attached imaging and therapeutic agents selectively to influenza viruses and virus-infected cells. We have designed here a zanamivir-conjugated rhodamine dye that allows visual monitoring of binding, internalization, and intracellular trafficking of the fluorescence-labeled neuraminidase in virus-infected cells. We also synthesize a zanamivir-99mTc radioimaging conjugate that permits whole body imaging of the virus's biodistribution and abundance in infected mice. Finally, we create both a zanamivir-targeted cytotoxic drug (i.e., zanamivir-tubulysin B) and a viral neuraminidase-targeted CAR T cell and demonstrate that they are both able to kill viral neuraminidase-expressing cells without damaging healthy cells. Taken together, these data suggest that the influenza virus neuraminidase inhibitor, zanamivir, can be exploited to improve the diagnosis, imaging, and treatment of influenza virus infections.


Assuntos
Vírus da Influenza A/isolamento & purificação , Influenza Humana/diagnóstico por imagem , Neuraminidase/análise , Proteínas Virais/análise , Animais , Inibidores Enzimáticos/análise , Células HEK293 , Humanos , Vírus da Influenza A/enzimologia , Camundongos , Neuraminidase/antagonistas & inibidores , Imagem Óptica , Infecções por Orthomyxoviridae/diagnóstico por imagem , Proteínas Virais/antagonistas & inibidores , Zanamivir/análise
14.
J Neuroinflammation ; 18(1): 30, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33472663

RESUMO

BACKGROUND: Activated macrophages in the experimental model of multiple sclerosis (MS) express folate receptor-ß (FR-ß), representing a promising target for the treatment of MS. Here, we both evaluated the efficacy of a novel folate-aminopterin construct (EC2319) in a rat focal model of multiple sclerosis (MS) and investigated the utility of 68Ga-labeled 1,4,7-triazacyclononane-1,4,7-triacetic acid-conjugated folate (68Ga-FOL) for assessing inflammatory lesions. In addition, we investigated whether FR-ß is expressed in the brain of patients with MS. METHODS: Focal delayed-type hypersensitivity experimental autoimmune encephalomyelitis (fDTH-EAE) was induced in 40 Lewis rats; 20 healthy Lewis rats were used as controls. Rats were divided into six groups according to the duration of disease (control, acute, or chronic) and intervention (vehicle versus EC2319). 68Ga-FOL analyses, histology, and immunofluorescence of the brain were performed to evaluate the efficacy of subcutaneously administered EC2319 on lesion development. Immunofluorescence was used to assess FR-ß expression in postmortem brain samples from 5 patients with MS and 5 healthy controls. RESULTS: Immunofluorescence and histological analyses revealed significant reductions in FR-ß expression (P < 0.05) and lesion size (P < 0.01), as well as improved inducible nitric oxide synthase/mannose receptor C type 1 ratios (P < 0.01) in macrophages and microglia during the chronic but not acute phase of fDTH-EAE in EC2319-treated rats. The uptake of IV-injected 68Ga-FOL in the brain was low and did not differ between the groups, but the in vitro binding of 68Ga-FOL was significantly lower in EC2319-treated rats (P < 0.01). FR-ß positivity was observed in chronically active lesions and in normal-appearing white matter in MS brain samples. CONCLUSIONS: EC2319 was well tolerated and attenuated inflammation and lesion development in a rat model of a chronic progressive form of MS. Human MS patients have FR-ß-positive cells in chronically active plaques, which suggests that these results may have translational relevance.


Assuntos
Aminopterina/farmacologia , Encefalomielite Autoimune Experimental/patologia , Receptor 2 de Folato/metabolismo , Antagonistas do Ácido Fólico/farmacologia , Ácido Fólico/farmacologia , Animais , Humanos , Esclerose Múltipla/metabolismo , Ratos , Ratos Endogâmicos Lew
15.
Nat Commun ; 11(1): 5597, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33154358

RESUMO

Seasonal influenza epidemics lead to 3-5 million severe infections and 290,000-650,000 annual global deaths. With deaths from the 1918 influenza pandemic estimated at >50,000,000 and future pandemics anticipated, the need for a potent influenza treatment is critical. In this study, we design and synthesize a bifunctional small molecule by conjugating the neuraminidase inhibitor, zanamivir, with the highly immunogenic hapten, dinitrophenyl (DNP), which specifically targets the surface of free virus and viral-infected cells. We show that this leads to simultaneous inhibition of virus release, and immune-mediated elimination of both free virus and virus-infected cells. Intranasal or intraperitoneal administration of a single dose of drug to mice infected with 100x MLD50 virus is shown to eradicate advanced infections from representative strains of both influenza A and B viruses. Since treatments of severe infections remain effective up to three days post lethal inoculation, our approach may successfully treat infections refractory to current therapies.


Assuntos
Antivirais/administração & dosagem , Antivirais/farmacologia , Imunoterapia/métodos , Infecções por Orthomyxoviridae/tratamento farmacológico , 2,4-Dinitrofenol/administração & dosagem , 2,4-Dinitrofenol/química , 2,4-Dinitrofenol/imunologia , Administração Intranasal , Animais , Anticorpos/administração & dosagem , Anticorpos/imunologia , Antivirais/química , Linhagem Celular , Citotoxicidade Imunológica/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Humanos , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/enzimologia , Vírus da Influenza A/fisiologia , Vírus da Influenza B/efeitos dos fármacos , Vírus da Influenza B/enzimologia , Vírus da Influenza B/fisiologia , Infusões Parenterais , Camundongos , Camundongos Endogâmicos BALB C , Neuraminidase/antagonistas & inibidores , Neuraminidase/metabolismo , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Ligação Proteica , Resultado do Tratamento , Liberação de Vírus/efeitos dos fármacos , Zanamivir/administração & dosagem , Zanamivir/química , Zanamivir/farmacologia
16.
Sci Transl Med ; 12(567)2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33115948

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a lethal disease with an average life expectancy of 3 to 5 years. IPF is characterized by progressive stiffening of the lung parenchyma due to excessive deposition of collagen, leading to gradual failure of gas exchange. Although two therapeutic agents have been approved from the FDA for IPF, they only slow disease progression with little impact on outcome. To develop a more effective therapy, we have exploited the fact that collagen-producing myofibroblasts express a membrane-spanning protein, fibroblast activation protein (FAP), that exhibits limited if any expression on other cell types. Because collagen-producing myofibroblasts are only found in fibrotic tissues, solid tumors, and healing wounds, FAP constitutes an excellent marker for targeted delivery of drugs to tissues undergoing pathologic fibrosis. We demonstrate here that a low-molecular weight FAP ligand can be used to deliver imaging and therapeutic agents selectively to FAP-expressing cells. Because induction of collagen synthesis is associated with phosphatidylinositol 3-kinase (PI3K) activation, we designed a FAP-targeted PI3K inhibitor that selectively targets FAP-expressing human IPF lung fibroblasts and potently inhibited collagen synthesis. Moreover, we showed that administration of the inhibitor in a mouse model of IPF inhibited PI3K activation in fibrotic lungs, suppressed production of hydroxyproline (major building block of collagen), reduced collagen deposition, and increased mouse survival. Collectively, these studies suggest that a FAP-targeted PI3K inhibitor might be promising for treating IPF.


Assuntos
Fibrose Pulmonar Idiopática , Fosfatidilinositol 3-Quinases , Animais , Fibroblastos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Pulmão , Camundongos , Modelos Teóricos , Serina-Treonina Quinases TOR
17.
J Immunother Cancer ; 8(2)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33127654

RESUMO

BACKGROUND: Most adoptive cell therapies (ACTs) suffer from an inability to control the therapeutic cell's behavior following its transplantation into a patient. Thus, efforts to inhibit, activate, differentiate or terminate an ACT after patient reinfusion can be futile, because the required drug adversely affects other cells in the patient. METHODS: We describe here a two domain fusion receptor composed of a ligand-binding domain linked to a recycling domain that allows constitutive internalization and trafficking of the fusion receptor back to the cell surface. Because the ligand-binding domain is designed to bind a ligand not normally present in humans, any drug conjugated to this ligand will bind and endocytose selectively into the ACT. RESULTS: In two embodiments of our strategy, we fuse the chronically endocytosing domain of human folate receptor alpha to either a murine scFv that binds fluorescein or human FK506 binding protein that binds FK506, thereby creating a fusion receptor composed of largely human components. We then create the ligand-targeted drug by conjugating any desired drug to either fluorescein or FK506, thereby generating a ligand-drug conjugate with ~10-9 M affinity for its fusion receptor. Using these tools, we demonstrate that CAR T cell activities can be sensitively tuned down or turned off in vitro as well as tightly controlled following their reinfusion into tumor-bearing mice. CONCLUSIONS: We suggest this 'chimeric endocytosing receptor' can be exploited to manipulate not only CAR T cells but other ACTs following their reinfusion into patients. With efforts to develop ACTs to treat diseases including diabetes, heart failure, osteoarthritis, cancer and sickle cell anemia accelerating, we argue an ability to manipulate ACT activities postinfusion will be important.


Assuntos
Quimera/metabolismo , Endocitose/fisiologia , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/metabolismo , Humanos
18.
Sci Rep ; 10(1): 13593, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32788595

RESUMO

Folate receptor ß (FR-ß), a marker expressed on macrophages, is a promising target for imaging of inflammation. Here, we report the radiosynthesis and preclinical evaluation of [68Ga]Ga-NOTA-folate (68Ga-FOL). After determining the affinity of 68Ga-FOL using cells expressing FR-ß, we studied atherosclerotic mice with 68Ga-FOL and 18F-FDG PET/CT. In addition, we studied tracer distribution and co-localization with macrophages in aorta cryosections using autoradiography, histology, and immunostaining. The specificity of 68Ga-FOL was assessed in a blocking study with folate glucosamine. As a final step, human radiation doses were extrapolated from rat PET data. We were able to produce 68Ga-FOL with high radiochemical purity and moderate molar activity. Cell binding studies revealed that 68Ga-FOL had 5.1 nM affinity for FR-ß. Myocardial uptake of 68Ga-FOL was 20-fold lower than that of 18F-FDG. Autoradiography and immunohistochemistry of the aorta revealed that 68Ga-FOL radioactivity co-localized with Mac-3-positive macrophage-rich atherosclerotic plaques. The plaque-to-healthy vessel wall ratio of 68Ga-FOL was significantly higher than that of 18F-FDG. Blocking studies verified that 68Ga-FOL was specific for FR. Based on estimations from rat data, the human effective dose was 0.0105 mSv/MBq. Together, these findings show that 68Ga-FOL represents a promising new FR-ß-targeted tracer for imaging macrophage-associated inflammation.


Assuntos
Receptor 2 de Folato/metabolismo , Ácido Fólico/química , Compostos Heterocíclicos com 1 Anel/química , Macrófagos/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/química , Animais , Células CHO , Cricetinae , Cricetulus , Fluordesoxiglucose F18/química , Fluordesoxiglucose F18/farmacocinética , Radioisótopos de Gálio/química , Radioisótopos de Gálio/farmacocinética , Humanos , Camundongos , Placa Aterosclerótica/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Compostos Radiofarmacêuticos/farmacocinética , Ratos , Distribuição Tecidual
19.
EMBO Mol Med ; 12(8): e12034, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32597014

RESUMO

Fibrotic diseases cause organ failure that lead to ~45% of all deaths in the United States. Activated macrophages stimulate fibrosis by secreting cytokines that induce fibroblasts to synthesize collagen and extracellular matrix proteins. Although suppression of macrophage-derived cytokine production can halt progression of fibrosis, therapeutic agents that prevent release of these cytokines (e.g., TLR7 agonists) have proven too toxic to administer systemically. Based on the expression of folate receptor ß solely on activated myeloid cells, we have created a folate-targeted TLR7 agonist (FA-TLR7-54) that selectively accumulates in profibrotic macrophages and suppresses fibrosis-inducing cytokine production. We demonstrate that FA-TLR7-54 reprograms M2-like fibrosis-inducing macrophages into fibrosis-suppressing macrophages, resulting in dramatic declines in profibrotic cytokine release, hydroxyproline biosynthesis, and collagen deposition, with concomitant increases in alveolar airspaces. Although nontargeted TLR7-54 is lethal at fibrosis-suppressing doses, FA-TLR7-54 halts fibrosis without evidence of toxicity. Taken together, FA-TLR7-54 is shown to constitute a novel and potent approach for treating fibrosis without causing dose-limiting systemic toxicities.


Assuntos
Bleomicina , Fibrose Pulmonar , Animais , Fibroblastos , Macrófagos , Macrófagos Alveolares , Camundongos , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico
20.
Mol Imaging Biol ; 22(5): 1280-1289, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32519245

RESUMO

PURPOSE: We recently developed a new instrument called "diffuse in vivo flow cytometry" (DiFC) for enumeration of rare fluorescently labeled circulating tumor cells (CTCs) in small animals without drawing blood samples. Until now, we have used cell lines that express fluorescent proteins or were pre-labeled with a fluorescent dye ex vivo. In this work, we investigated the use of a folate receptor (FR)-targeted fluorescence molecular probe for in vivo labeling of FR+ CTCs for DiFC. PROCEDURES: We used EC-17, a FITC-folic acid conjugate that has been used in clinical trials for fluorescence-guided surgery. We studied the affinity of EC-17 for FR+ L1210A and KB cancer cells. We also tested FR- MM.1S cells. We tested the labeling specificity in cells in culture in vitro and in whole blood. We also studied the detectability of labeled cells in mice in vivo with DiFC. RESULTS: EC-17 showed a high affinity for FR+ L1210A and KB cells in vitro. In whole blood, 85.4 % of L1210A and 80.9 % of KB cells were labeled above non-specific background with EC-17, and negligible binding to FR- MM.1S cells was observed. In addition, EC-17-labeled CTCs were readily detectable in circulation in mice with DiFC. CONCLUSIONS: This work demonstrates the feasibility of labeling CTCs with a cell-surface receptor-targeted probe for DiFC, greatly expanding the potential utility of the method for pre-clinical animal models. Because DiFC uses diffuse light, this method could be also used to enumerate CTCs in larger animal models and potentially even in humans.


Assuntos
Citometria de Fluxo/métodos , Receptores de Folato com Âncoras de GPI/metabolismo , Sondas Moleculares/química , Células Neoplásicas Circulantes/patologia , Coloração e Rotulagem , Animais , Linhagem Celular Tumoral , Fluorescência , Receptores de Folato com Âncoras de GPI/sangue , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA