Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phage (New Rochelle) ; 5(2): 107-116, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39119207

RESUMO

Background: Colibacillosis caused by Escherichia coli is one of the main problems in the swine industry. In addition, the emergence of antimicrobial resistance and the combination of virulence genes among pathotypes have led to the emergence of more virulent pathogenic E. coli strains. Phage therapy has become a promising approach to address these issues. Materials and Methods: Virulence genes for intestinal pathogenic E. coli (IPEC) and extraintestinal pathogenic E. coli (ExPEC) were investigated in pathogenic E. coli isolated from pigs. In addition, two potential phages, vB_EcoM-RPN187 and vB_EcoM-RPN226, isolated in our previous study, were further characterized in this study. Results: Both phages were lytic and were highly effective at 20-37°C. Interestingly, they infected the hybrid IPEC/ExPEC strains. vB_EcoM-RPN187 and vB_EcoM-RPN226 possess 167 kbp of linear double-stranded DNA without virulence or antibiotic resistance genes and may be classified as new phage species in the genera Mosigvirus and Tequatrovirus, respectively. Conclusion: Both phages could be promising candidates for phage therapy against pathogenic E. coli.

2.
Res Vet Sci ; 151: 138-148, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-35914451

RESUMO

Escherichia coli is the most common cause of economic loss in swine industry. Nowadays, bacteriophages have been proven as good candidates for controlling bacterial infections. In this study, 6 phages were isolated and selected based on their high efficacy against 11 stains of E. coli isolated from diarrheal pigs. Six groups of weaned piglets were assigned (control, bacterial control (BC), two phage control (PC) and two phage treatment (PT) groups). Two titers (2 × 109 PFU/animal and 2 × 1010 PFU/animal) of phage cocktails consisting of these phages were tested in the PC and PT groups via oral gavage at 24, 48, and 72 h against an E. coli cocktail (2 × 109 CFU/animal) that was given to the piglets at 0, 12, 24, and 48 h of the trial. A significant reduction of fecal E. coli counts was observed in both PT groups from day 1 to 7 following the final phage dosage when compared to those of the BC group. Microbiomes in feces obtained 24 h after the final phage administration revealed phage therapy with both dosages could restore the gut's bacterial composition. Moreover, the given phage cocktails resulted in a significantly higher average daily gain of piglets during the first few weeks in both PC groups and the PT group receiving a higher phage dosage. These findings suggest that bacteriophages might be a potential alternative to antibiotics in the treatment of pathogens. In addition, they could also be utilized to improve pig growth performance.


Assuntos
Bacteriófagos , Infecções por Escherichia coli , Microbiota , Doenças dos Suínos , Animais , Carga Bacteriana/veterinária , Escherichia coli , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/terapia , Infecções por Escherichia coli/veterinária , Fezes/microbiologia , Suínos , Doenças dos Suínos/microbiologia , Doenças dos Suínos/terapia
3.
Arch Virol ; 167(8): 1675-1679, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35598209

RESUMO

The novel Escherichia phage vB_EcoM-RPN242 was isolated using a strain of Escherichia coli originating from a diarrheic piglet as a host. The phage was able to form plaques on the E. coli lawn at 15-45 °C. Moreover, it was stable over a wide pH (4-10) and temperature (4-70 °C) range. The vB_EcoM-RPN242 genome was found to be a linear, double-stranded DNA consisting of 154,840 base pairs. There were 195 protein-encoding genes and two tRNAs detected in the genome; however, no genes associated with virulence, toxins or antimicrobial resistance were found. According to overall nucleotide sequence comparisons, vB_EcoM-RPN242 possibly represents a new species in the genus Agtrevirus.


Assuntos
Bacteriófagos , Animais , Bacteriófagos/genética , Escherichia coli/genética , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA , Suínos
4.
Vet World ; 15(12): 2822-2829, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36718320

RESUMO

Background and Aim: Swine enteric colibacillosis caused by Escherichia coli is a major problem in the swine industry, causing diarrhea among swine and resulting in substantial financial losses. However, efforts to counter this disease are impeded by the increase in antimicrobial resistance (AMR) worldwide, so intensive research is being conducted to identify alternative treatments. This study isolated, characterized, and evaluated the efficacy of bacteriophages to control pathogens causative of swine enteric colibacillosis. Materials and Methods: Five sewage samples were collected from different areas of a swine farm in Suphanburi province, Thailand and the bacteriophages were enriched and isolated, followed by purification by the agar overlay method using E. coli RENR as the host strain. The selected phages were characterized by evaluating their morphology, while their specificity was verified by the host range test. The efficiency of plating and multiplicity of infection (MOI) were also determined. Results: Four selected phages, namely, vB_Eco-RPNE4i3, vB_Eco-RPNE6i4, vB_Eco-RPNE7i1, and vB_Eco-RPNE8i3, demonstrated different patterns of host range and phage efficiency. They significantly decreased E. coli concentration at the tested MOIs (0.01-100) from 1 h onward. However, bacterial regrowth was observed in all phage treatments. Conclusion: This study shows the potential of using phages as an alternative treatment for swine enteric colibacillosis. The obtained results demonstrated that the selected phages had a therapeutic effect against pathogens causative of swine enteric colibacillosis. Therefore, phages could be applied as an alternative treatment to control specific bacterial strains and reduce AMR arising from the overuse of antibiotics.

5.
Vet World ; 15(12): 2856-2869, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36718326

RESUMO

Background and Aim: Salmonella Choleraesuis is the most common serotype that causes salmonellosis in swine. Recently, the use of bacteriophages as a potential biocontrol strategy has increased. Therefore, this study aimed to isolate and characterize bacteriophages specific to S. Choleraesuis associated with swine infection and to evaluate the efficacy of individual phages and a phage cocktail against S. Choleraesuis strains in simulated intestinal fluid (SIF). Materials and Methods: Three strains of S. Choleraesuis isolated from pig intestines served as host strains for phage isolation. The other 10 Salmonella serovars were also used for the phage host range test. The antibiotic susceptibility of the bacterial strains was investigated. Water samples from natural sources and drain liquid from slaughterhouses were collected for phage isolation. The isolated phages were characterized by determining the efficiency of plating against all Salmonella strains and the stability at a temperature range (4°C-65°C) and at low pH (2.5-4.0) in simulated gastric fluids (SGFs). Furthermore, morphology and genomic restriction analyses were performed for phage classification phages. Finally, S. Choleraesuis reduction in the SIF by the selected individual phages and a phage cocktail was investigated. Results: The antibiotic susceptibility results revealed that most Salmonella strains were sensitive to all tested drugs. Salmonella Choleraesuis KPS615 was multidrug-resistant, showing resistance to three antibiotics. Nine phages were isolated. Most of them could infect four Salmonella strains. Phages vB_SCh-RP5i3B and vB_SCh-RP61i4 showed high efficiency in infecting S. Choleraesuis and Salmonella Rissen. The phages were stable for 1 h at 4°C-45°C. However, their viability decreased when the temperature increased to 65°C. In addition, most phages remained viable at a low pH (pH 2.5-4.0) for 2 h in SGF. The efficiency of phage treatment against S. Choleraesuis in SIF showed that individual phages and a phage cocktail with three phages effectively reduced S. Choleraesuis in SIF. However, the phage cocktails were more effective than the individual phages. Conclusion: These results suggest that the newly isolated phages could be promising biocontrol agents against S. Choleraesuis infection in pigs and could be orally administered. However, further in vivo studies should be conducted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA