Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Int Endod J ; 57(6): 745-758, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38477421

RESUMO

AIM: Loss-of-function mutations in FAM20A result in amelogenesis imperfecta IG (AI1G) or enamel-renal syndrome, characterized by hypoplastic enamel, ectopic calcification, and gingival hyperplasia, with some cases reporting spontaneous tooth infection. Despite previous reports on the consequence of FAM20A reduction in gingival fibroblasts and transcriptome analyses of AI1G pulp tissues, suggesting its involvement in mineralization and infection, its role in deciduous dental pulp cells (DDP) remains unreported. The aim of this study was to evaluate the properties of DDP obtained from an AI1G patient, providing additional insights into the effects of FAM20A on the mineralization of DDP. METHODOLOGY: DDP were obtained from a FAM20A-AI1G patient (mutant cells) and three healthy individuals. Cellular behaviours were examined using flow cytometry, MTT, attachment and spreading, colony formation, and wound healing assays. Osteogenic induction was applied to DDP, followed by alizarin red S staining to assess their osteogenic differentiation. The expression of FAM20A-related genes, osteogenic genes, and inflammatory genes was analysed using real-time PCR, Western blot, and/or immunolocalization. Additionally, STRING analysis was performed to predict potential protein-protein interaction networks. RESULTS: The mutant cells exhibited a significant reduction in FAM20A mRNA and protein levels, as well as proliferation, migration, attachment, and colony formation. However, normal FAM20A subcellular localization was maintained. Additionally, osteogenic/odontogenic genes, OSX, OPN, RUNX2, BSP, and DSPP, were downregulated, along with upregulated ALP. STRING analysis suggested a potential correlation between FAM20A and these osteogenic genes. After osteogenic induction, the mutant cells demonstrated reduced mineral deposition and dysregulated expression of osteogenic genes. Remarkably, FAM20A, FAM20C, RUNX2, OPN, and OSX were significantly upregulated in the mutant cells, whilst ALP, and OCN was downregulated. Furthermore, the mutant cells exhibited a significant increase in inflammatory gene expression, that is, IL-1ß and TGF-ß1, whereas IL-6 and NFκB1 expression was significantly reduced. CONCLUSION: The reduction of FAM20A in mutant DDP is associated with various cellular deficiencies, including delayed proliferation, attachment, spreading, and migration as well as altered osteogenic and inflammatory responses. These findings provide novel insights into the biology of FAM20A in dental pulp cells and shed light on the molecular mechanisms underlying AI1G pathology.


Assuntos
Amelogênese Imperfeita , Diferenciação Celular , Proteínas do Esmalte Dentário , Polpa Dentária , Nefrocalcinose , Osteogênese , Dente Decíduo , Humanos , Células Cultivadas , Proteínas do Esmalte Dentário/genética , Proteínas do Esmalte Dentário/metabolismo , Polpa Dentária/citologia , Polpa Dentária/metabolismo , Expressão Gênica , Mutação , Osteogênese/genética
2.
Oral Dis ; 30(2): 537-550, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36650945

RESUMO

OBJECTIVES: To identify etiologic variants and perform deep dental phenotyping in patients with amelogenesis imperfecta (AI). METHODS: Three patients of two unrelated families were evaluated. Genetic variants were investigated by exome and Sanger sequencing. An unerupted permanent third molar (AI1) from Patient1 and a deciduous first molar (AI2) from Patient2, along with three tooth-type matched controls for each were characterized. RESULTS: All three patients harbored biallelic pathogenic variants in FAM20A, indicating AI1G. Of the four identified variants, one, c.1231C > T p.(Arg411Trp), was novel. Patient1 possessed the largest deletion, 7531 bp, ever identified in FAM20A. In addition to hypoplastic enamel, multiple impacted teeth, intrapulpal calcification, pericoronal radiolucencies, malocclusion, and periodontal infections were found in all three patients, gingival hyperplasia in Patient1 and Patient2, and alveolar bone exostosis in Patient3. Surface roughness was increased in AI1 but decreased in AI2. Decreased enamel mineral density, hardness, and elastic modulus were observed in AI1 enamel and dentin and AI2 dentin, along with decreased phosphorus, increased carbon, and increased calcium/phosphorus and carbon/oxygen ratios. Severely collapsed enamel rods and disorganized dentin-enamel junction were observed. CONCLUSIONS: We report a novel FAM20A variant and, for the first time, the defective mineral composition and physical/mechanical properties of AI1G teeth.


Assuntos
Amelogênese Imperfeita , Proteínas do Esmalte Dentário , Humanos , Amelogênese Imperfeita/genética , Amelogênese Imperfeita/patologia , Mutação , Proteínas do Esmalte Dentário/genética , Fósforo , Minerais , Carbono
4.
BDJ Open ; 9(1): 15, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041139

RESUMO

OBJECTIVES: To characterize phenotype and genotype of amelogenesis imperfecta (AI) in a Thai patient, and review of literature. MATERIALS AND METHODS: Variants were identified using trio-exome and Sanger sequencing. The ITGB6 protein level in patient's gingival cells was measured. The patient's deciduous first molar was investigated for surface roughness, mineral density, microhardness, mineral composition, and ultrastructure. RESULTS: The patient exhibited hypoplastic-hypomineralized AI, taurodontism, and periodontal inflammation. Exome sequencing identified the novel compound heterozygous ITGB6 mutation, a nonsense c.625 G > T, p.(Gly209*) inherited from mother and a splicing c.1661-3 C > G from father, indicating AI type IH. The ITGB6 level in patient cells was significantly reduced, compared with controls. Analyses of a patient's tooth showed a significant increase in roughness while mineral density of enamel and microhardness of enamel and dentin were significantly reduced. In dentin, carbon was significantly decreased while calcium, phosphorus, and oxygen levels were significantly increased. Severely collapsed enamel rods and a gap in dentinoenamel junction were observed. Of six affected families and eight ITGB6 variants that have been reported, our patient was the only one with taurodontism. CONCLUSION: We report the hypoplasia/hypomineralization/taurodontism AI patient with disturbed tooth characteristics associated with the novel ITGB6 variants and reduced ITGB6 expression, expanding genotype, phenotype, and understanding of autosomal recessive AI.

5.
Oral Dis ; 28(3): 734-744, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33486840

RESUMO

OBJECTIVES: Autosomal-dominant hypocalcified amelogenesis imperfecta (ADHCAI) shows phenotypic heterogeneity. Our aim was to characterise the ADHCAI phenotypes, tooth properties and genotypes. METHODS: Three unrelated ADHCAI probands and seven additional affected members of the three families were recruited. Mutations were identified by exome and Sanger sequencing, and haplotypes by SNP array. Tooth colour, roughness, density, nanohardness, minerals and ultrastructure were investigated. RESULTS: Ten participants were heterozygous for the FAM83H mutation c.1387C>T (p.Gln463*). All shared a 3.43 Mbp region on chromosome 8q24.3 encompassing the FAM83H variant, indicating a common ancestry. The c.1387C>T was estimated to be 23.8 generations or 600 years. The FAM83H enamel had higher roughness and lower lightness, density, nanohardness, and calcium and phosphorus levels than controls. Blunted enamel rods, wide interrod spaces and disorganised dentinoenamel junctions were observed. Evaluating the patients with the same mutation and reviewing others with different mutations in FAM83H revealed that the FAM83H heterogeneous phenotypes are age-influenced. Tooth colour and surface texture change with ageing. CONCLUSIONS: FAM83H enamel demonstrated decreased lightness, density, hardness, calcium, phosphorus and defective ultrastructure. We have identified that the phenotypic variation in FAM83H-associated ADHCAI is age-related. Awareness of the correlation between age and clinical features of FAM83H-ADHCAI can help dentists make an accurate diagnosis.


Assuntos
Amelogênese Imperfeita , Amelogênese Imperfeita/genética , Códon sem Sentido , Humanos , Fenótipo , Proteínas/genética
6.
Cell Prolif ; 54(11): e13132, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34580954

RESUMO

BACKGROUND: Patients with ELANE variants and severe congenital neutropenia (SCN) commonly develop oral complications. Whether they are caused only by low neutrophil count or the combination of neutropenia and aberrant dental cells is unknown. METHODS: Genetic variant was identified with exome sequencing. Dental pulp cells isolated from the SCN patient with an ELANE mutation were investigated for gene expression, enzyme activity, proliferation, colony formation, wound healing, apoptosis, ROS, attachment, spreading and response to lipopolysaccharide. RESULTS: ELANE cells had diminished expression of ELANE and SLPI and reduced neutrophil elastase activity. Moreover, ELANE cells exhibited impaired proliferation, colony forming, migration, attachment and spreading; and significantly increased ROS formation and apoptosis, corresponding with increased Cyclin D1 and MMP2 levels. The intrinsic levels of TGF-ß1 and TNF-α were significantly increased; however, IL-6, IL-8 and NF-kB1 were significantly decreased in ELANE cells compared with those in controls. After exposure to lipopolysaccharide, ELANE cells grew larger, progressed to more advanced cell spreading stages and showed significantly increased SLPI, TNF-α and NF-kB1 and tremendously increased IL-6 and IL-8 expression, compared with controls. CONCLUSION: This study, for the first time, suggests that in addition to neutropenia, the aberrant levels and functions of ELANE, SLPI and their downstream molecules in pulp cells play an important role in oral complications in SCN patients. In addition, pulp cells with diminished neutrophil elastase and SLPI are highly responsive to inflammation.


Assuntos
Polpa Dentária/metabolismo , Elastase de Leucócito/metabolismo , Inibidor Secretado de Peptidases Leucocitárias/metabolismo , Síndrome Congênita de Insuficiência da Medula Óssea/metabolismo , Humanos , Elastase de Leucócito/genética , Mutação/genética , Neutropenia/congênito , Neutropenia/metabolismo , Inibidor Secretado de Peptidases Leucocitárias/genética
7.
Am J Med Genet A ; 185(10): 3068-3073, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34037307

RESUMO

PYCR2 pathogenic variants lead to an autosomal recessive hypomyelinating leukodystrophy 10 (HLD10), characterized by global developmental delay, microcephaly, facial dysmorphism, movement disorder, and hypomyelination. This study identified the first two unrelated Thai patients with HLD10. Patient 1 harbored the novel compound heterozygous variants, c.257T>G (p.Val86Gly) and c.400G>A (p.Val134Met), whereas patient 2 possessed the homozygous variant, c.400G>A (p.Val134Met), in PYCR2. Haplotype analysis revealed that the two families' members shared a 2.3 Mb region covering the c.400G>A variant, indicating a common ancestry. The variant was estimated to age 1450 years ago. Since the c.400G>A was detected in three out of four mutant alleles and with a common ancestry, this variant might be common in Thai patients. We also reviewed the phenotype and genotype of all 35 previously reported PYCR2 patients and found that majorities of cases were homozygous with a consanguineous family history, except patient 1 and another reported case who were compound heterozygous. All patients had microcephaly and developmental delay. Hypotonia and peripheral spasticity were common. Hypomyelination or delayed myelination was a typical radiographic feature. Here, we report the first two Thai patients with HLD10 with the novel PYCR2 variants expanding the genotypic spectrum and suggest that the c.400G>A might be a common mutation in Thai patients.


Assuntos
Sistemas de Transporte de Aminoácidos Acídicos/deficiência , Antiporters/deficiência , Deficiências do Desenvolvimento/genética , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Microcefalia/genética , Doenças Mitocondriais/genética , Transtornos dos Movimentos/genética , Transtornos Psicomotores/genética , Pirrolina Carboxilato Redutases/genética , Adolescente , Alelos , Sistemas de Transporte de Aminoácidos Acídicos/genética , Antiporters/genética , Criança , Pré-Escolar , Deficiências do Desenvolvimento/complicações , Deficiências do Desenvolvimento/patologia , Feminino , Genótipo , Haplótipos/genética , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/complicações , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/patologia , Homozigoto , Humanos , Masculino , Microcefalia/complicações , Microcefalia/patologia , Doenças Mitocondriais/complicações , Doenças Mitocondriais/patologia , Transtornos dos Movimentos/complicações , Transtornos dos Movimentos/patologia , Mutação , Linhagem , Fenótipo , Transtornos Psicomotores/complicações , Transtornos Psicomotores/patologia , Adulto Jovem
8.
Int J Neonatal Screen ; 7(1)2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562887

RESUMO

A variant in the POLG gene is the leading cause of a heterogeneous group of mitochondrial disorders. No definitive treatment is currently available. Prenatal and newborn screening have the potential to improve clinical outcome of patients affected with POLG-related disorders. We reported a 4-month-old infant who presented with developmental delay, fever, and diarrhea. Within two weeks after hospital admission, the patient developed hepatic failure and died. Liver necropsy demonstrated an extensive loss of hepatocytes and bile duct proliferations. Trio-whole exome sequencing identified that the patient was compound heterozygous for a novel frameshift variant c.3102delG (p.Lys1035Serfs*59) and a common variant c.3286C>T (p.Arg1096Cys) in POLG (NM_002693.3) inherited from the mother and father, respectively. The c.3102delG (p.Lys1035Serfs*59) was a null variant and classified as pathogenic according to the American College of Medical Genetics and Genomics Standards and Guidelines. Prenatal genetic screenings using rapid whole exome sequencing successfully detected the heterozygous c.3286C>T variant in the following pregnancy and the normal alleles in the other one. Both children had been healthy. We reviewed all 34 cases identified with the POLG c.3286C>T variant and found that all 15 compound heterozygous cases had two missense variants except our patient who had the truncating variant and showed the earliest disease onset, rapid deterioration, and the youngest death. All homozygous cases had disease onset before age 2 and developed seizure. Here, we report a novel POLG variant expanding the genotypic spectrum, demonstrate the successful use of exome sequencing for prenatal and neonatal screenings of POLG-related disorders, and show the genotype-phenotype correlation of the common c.3286C>T variant.

9.
Front Physiol ; 11: 573214, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329022

RESUMO

Tooth agenesis is one of the most common orodental anomalies that demonstrate phenotypic and genotypic heterogeneity with a prevalence of 2.5%-7%. Mutations in WNT10A have been proposed to be the most common cause of nonsyndromic tooth agenesis (NSTA). The aim of this study was to characterize the dental features and genetic variants of NSTA in a Thai population. We recruited 13 unrelated patients with NSTA who attended the Faculty of Dentistry, Chulalongkorn University, Thailand, from 2017 to 2019. All 13 underwent whole exome sequencing that identified likely pathogenic genetic variants, all in WNT10A, in five patients. All five patients had second premolar agenesis, while three also had absent or peg-shaped upper lateral incisors. Patient 1 possessed a novel heterozygous duplication, c.916_918dupAAC (p.Asn306dup) in WNT10A. Patients 2 and 3 harbored a heterozygous and homozygous c.637G > A (p.Gly213Ser) in WNT10A, respectively. Patients 4 possessed a heterozygous c.511C > T (p.Arg171Cys) in WNT10A. Patient 5 harbored a homozygous c.511C > T (p.Arg171Cys) in WNT10A and a novel heterozygous c.413A > T (p.Asn138Ile) in EDARADD, suggesting digenic inheritance. We recruited another 18 family members of these five patients. Out of 23 participants, homozygous WNT10A variants were identified in 2 patients and heterozygous variants in 17 individuals. Both homozygous patients had NSTA. Eight out of 17 heterozygous individuals (8/17) had NSTA or a peg-shaped lateral incisor, indicating a 47% penetrance of the heterozygous variants or 53% (10/19) penetrance of either homozygous or heterozygous variants in WNT10A. The frequencies of the c.511C > T in our in-house 1,876 Thai exome database, Asian populations, and non-Asian populations were 0.016, 0.005-0.033, and 0.001, respectively; while those of the c.637G > A were 0.016, 0.004-0.029, and 0.000, respectively. In conclusion, our study reports two novel variants with one each in WNT10A and EDARADD, expanding the genotypic spectra of NSTA. Second premolar agenesis is a common phenotype in affected individuals with variants in WNT10A; however, its penetrance is incomplete. Lastly, the different frequencies of WNT10A variants, c.511C > T and c.637G > A, in diverse populations might contribute to the prevalence range of NSTA between continents.

10.
Toxicol Sci ; 160(1): 173-179, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28973694

RESUMO

Pregnancy is a complex physiological state, in which the metabolism of endogenous as well as exogenous agents is ostensibly altered. One exogenous agent of concern is the hepatocarcinogen aflatoxin B1 (AFB1), a foodborne fungal toxin, that requires phase I metabolic oxidation for conversion to its toxic and carcinogenic form, the AFB1-8,9-exo-epoxide. The epoxide interacts with cellular targets causing toxicity and cell death; these targets include the covalent modification of DNA leading to mutations that can initiate malignant transformation. The main detoxification pathway of the AFB1-epoxide involves phase II metabolic enzymes including the glutathione-S-transferase (GST) family. Pregnancy can modulate both phase I and II metabolism and alter the biological potency of AFB1. The present work investigated the impact of pregnancy on AFB1 exposure in mice. A single IP dose of 6 mg/kg AFB1 was administered to pregnant C57BL/6 J mice at gestation day 14 and matched non-pregnant controls. Pregnant mice accumulated 2-fold higher AFB1-N7-guanine DNA adducts in the liver when compared with nonpregnant controls 6 h post-exposure. Enhanced DNA adduct formation in pregnant animals paralleled elevated hepatic protein expression of mouse CYP1A2 and mouse homologs of human CYP3A4, phase I enzymes capable of bioactivating AFB1. Although phase II enzymes GSTA1/2 showed decreased protein expression, GSTA3, the primary enzymatic protection against the AFB1-epoxide, was unaffected at the protein level. Taken together, our results reveal that pregnancy may constitute a critical window of susceptibility for maternal health, and provide insight into the biochemical factors that could explain the underlying risks.


Assuntos
Aflatoxina B1/análogos & derivados , Carcinógenos/toxicidade , Dano ao DNA , Guanina/análogos & derivados , Hepatócitos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Ativação Metabólica , Aflatoxina B1/metabolismo , Aflatoxina B1/toxicidade , Animais , Carcinógenos/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP3A/metabolismo , Adutos de DNA/metabolismo , Feminino , Idade Gestacional , Glutationa Transferase/metabolismo , Guanina/metabolismo , Guanina/toxicidade , Hepatócitos/metabolismo , Isoenzimas/metabolismo , Fígado/metabolismo , Exposição Materna , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA