RESUMO
INTRODUCTION: Pregnancy complications, including preeclampsia (PE), preterm birth (PTB), and intra-uterine growth restriction (IUGR) have individually been associated with inflammation but the combined comparative analysis of their placental profiles at the transcriptomic and histological levels is lacking. METHODS: Bulk RNA-sequencing of human placental biopsies from uncomplicated term pregnancies (CTL) and pregnancies complicated with early-onset (EO), and late-onset (LO) PE, as well as PTB and term IUGR were used to characterize individual molecular profiles. We also applied immune-cell-specific cellular deconvolution to address local immune cell compositions and analyzed placental lesions by histology to further characterize these complications. RESULTS: Transcriptome analysis revealed that clinically distinct complications differentiated themselves in unique ways compared to CTLs. Only TMEM136 was commonly modulated. Compared to CTLs, we found that PTB and IUGR were the most distinct, with LOPE being the least distinct. PTB and IUGR revealed differently enhanced inflammatory pathways, where PTB had general inflammatory responses and IUGR had immune cell activation. This inflammation was reflected in the histological profile for PTB only, whereas structural lesions were elevated in all complications. Placental lesions additionally had corresponding enhancement in inflammatory and structural biological processes. We observed that having co-complications, particularly for PTB with or without IUGR, impacted placental transcriptomes. Lastly, cellular deconvolution uncovered shared immune features among the complications. DISCUSSION: Overall, we provide evidence that these pregnancy complications are not only distinct in their clinical manifestations but also in their placental profiles, which could be leveraged to understand their underlying mechanisms and could offer therapeutic targets.
Assuntos
Retardo do Crescimento Fetal , Placenta , Transcriptoma , Humanos , Feminino , Gravidez , Placenta/metabolismo , Placenta/patologia , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/metabolismo , Retardo do Crescimento Fetal/patologia , Adulto , Nascimento Prematuro , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/metabolismo , Complicações na Gravidez/genética , Complicações na Gravidez/metabolismo , Perfilação da Expressão GênicaRESUMO
Childhood B-cell acute lymphoblastic leukemia (B-ALL) is a heterogeneous disease comprising multiple molecular subgroups with subtype-specific expression profiles. Recently, a new type of ncRNA, termed circular RNA (circRNA), has emerged as a promising biomarker in cancer, but little is known about their role in childhood B-ALL. Here, through RNA-seq analysis in 105 childhood B-ALL patients comprising six genetic subtypes and seven B-cell controls from two independent cohorts we demonstrated that circRNAs properly stratified B-ALL subtypes. By differential expression analysis of each subtype vs. controls, 156 overexpressed and 134 underexpressed circRNAs were identified consistently in at least one subtype, most of them with subtype-specific expression. TCF3::PBX1 subtype was the one with the highest number of unique and overexpressed circRNAs, and the circRNA signature could effectively discriminate new patients with TCF3::PBX1 subtype from others. Our results indicated that NUDT21, an RNA-binding protein (RBP) involved in circRNA biogenesis, may contribute to this circRNA enrichment in TCF3::PBX1 ALL. Further functional characterization using the CRISPR-Cas13d system demonstrated that circBARD1, overexpressed in TCF3::PBX1 patients and regulated by NUDT21, might be involved in leukemogenesis through the activation of p38 via hsa-miR-153-5p. Our results suggest that circRNAs could play a role in the pathogenesis of childhood B-ALL.
Assuntos
MicroRNAs , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , RNA Circular , Humanos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Fusão Oncogênica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , RNA Circular/genéticaRESUMO
BACKGROUND: An increased risk of neurocognitive deficits, anxiety, and depression has been reported in childhood cancer survivors. METHODS: We analyzed associations of neurocognitive deficits, as well as anxiety and depression, with common and rare genetic variants derived from whole-exome sequencing data of acute lymphoblastic leukemia (ALL) survivors from the PETALE cohort. In addition, significant associations were assessed using stratified and multivariable analyses. Next, top-ranking common associations were analyzed in an independent SJLIFE replication cohort of ALL survivors. RESULTS: Significant associations were identified in the entire discovery cohort (N = 229) between the AK8 gene and changes in neurocognitive function, whereas PTPRZ1, MUC16, TNRC6C-AS1 were associated with anxiety. Following stratification according to sex, the ZNF382 gene was linked to a neurocognitive deficit in males, whereas APOL2 and C6orf165 were associated with anxiety and EXO5 with depression. Following stratification according to prognostic risk groups, the modulatory effect of rare variants on depression was additionally found in the CYP2W1 and PCMTD1 genes. In the replication SJLIFE cohort (N = 688), the male-specific association in the ZNF382 gene was not significant; however, a P value<0.05 was observed when the entire SJLIFE cohort was analyzed. ZNF382 was significant in males in the combined cohorts as shown by meta-analyses as well as the depression-associated gene EXO5. CONCLUSIONS: Further research is needed to confirm whether the current findings, along with other known risk factors, may be valuable in identifying patients at increased risk of these long-term complications. IMPACT: Our results suggest that specific genes may be related to increased neuropsychological consequences.
Assuntos
Depressão , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Masculino , Depressão/genética , Exoma , Sobreviventes , Ansiedade/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/genéticaRESUMO
BACKGROUND: Alterations of FLT3 are among the most common driver events in acute leukaemia with important clinical implications, since it allows patient classification into prognostic groups and the possibility of personalising therapy thanks to the availability of FLT3 inhibitors. Most of the knowledge on FLT3 implications comes from the study of acute myeloid leukaemia and so far, few studies have been performed in other leukaemias. METHODS: A comprehensive genomic (DNA-seq in 267 patients) and transcriptomic (RNA-seq in 160 patients) analysis of FLT3 in 342 childhood acute lymphoblastic leukaemia (ALL) patients was performed. Mutations were functionally characterised by in vitro experiments. RESULTS: Point mutations (PM) and internal tandem duplications (ITD) were detected in 4.3% and 2.7% of the patients, respectively. A new activating mutation of the TKD, G846D, conferred oncogenic properties and sorafenib resistance. Moreover, a novel alteration involving the circularisation of read-through transcripts (rt-circRNAs) was observed in 10% of the cases. Patients presenting FLT3 alterations exhibited higher levels of the receptor. In addition, patients with ZNF384- and MLL/KMT2A-rearranged ALL, as well as hyperdiploid subtype, overexpressed FLT3. DISCUSSION: Our results suggest that specific ALL subgroups may also benefit from a deeper understanding of the biology of FLT3 alterations and their clinical implications.
Assuntos
Leucemia Mieloide Aguda , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Mutação , Fatores de Transcrição/genética , Mutação Puntual , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Tirosina Quinase 3 Semelhante a fms/genéticaRESUMO
OBJECTIVES: Distributed computations facilitate multi-institutional data analysis while avoiding the costs and complexity of data pooling. Existing approaches lack crucial features, such as built-in medical standards and terminologies, no-code data visualizations, explicit disclosure control mechanisms, and support for basic statistical computations, in addition to gradient-based optimization capabilities. MATERIALS AND METHODS: We describe the development of the Collaborative Data Analysis (CODA) platform, and the design choices undertaken to address the key needs identified during our survey of stakeholders. We use a public dataset (MIMIC-IV) to demonstrate end-to-end multi-modal FL using CODA. We assessed the technical feasibility of deploying the CODA platform at 9 hospitals in Canada, describe implementation challenges, and evaluate its scalability on large patient populations. RESULTS: The CODA platform was designed, developed, and deployed between January 2020 and January 2023. Software code, documentation, and technical documents were released under an open-source license. Multi-modal federated averaging is illustrated using the MIMIC-IV and MIMIC-CXR datasets. To date, 8 out of the 9 participating sites have successfully deployed the platform, with a total enrolment of >1M patients. Mapping data from legacy systems to FHIR was the biggest barrier to implementation. DISCUSSION AND CONCLUSION: The CODA platform was developed and successfully deployed in a public healthcare setting in Canada, with heterogeneous information technology systems and capabilities. Ongoing efforts will use the platform to develop and prospectively validate models for risk assessment, proactive monitoring, and resource usage. Further work will also make tools available to facilitate migration from legacy formats to FHIR and DICOM.
Assuntos
Instalações de Saúde , Software , Humanos , Atenção à Saúde , Aprendizado de Máquina , CanadáRESUMO
Neuroblastoma, the most common type of pediatric extracranial solid tumor, causes 10% of childhood cancer deaths. Despite intensive multimodal treatment, the outcomes of high-risk neuroblastoma remain poor. We urgently need to develop new therapies with safe long-term toxicity profiles for rapid testing in clinical trials. Drug repurposing is a promising approach to meet these needs. Here, we investigated disulfiram, a safe and successful chronic alcoholism treatment with known anticancer and epigenetic effects. Disulfiram efficiently induced cell cycle arrest and decreased the viability of six human neuroblastoma cell lines at half-maximal inhibitory concentrations up to 20 times lower than its peak clinical plasma level in patients treated for chronic alcoholism. Disulfiram shifted neuroblastoma transcriptome, decreasing MYCN levels and activating neuronal differentiation. Consistently, disulfiram significantly reduced the protein level of lysine acetyltransferase 2A (KAT2A), drastically reducing acetylation of its target residues on histone H3. To investigate disulfiram's anticancer effects in an in vivo model of high-risk neuroblastoma, we developed a disulfiram-loaded emulsion to deliver the highly liposoluble drug. Treatment with the emulsion significantly delayed neuroblastoma progression in mice. These results identify KAT2A as a novel target of disulfiram, which directly impacts neuroblastoma epigenetics and is a promising candidate for repurposing to treat pediatric neuroblastoma.
Assuntos
Dissulfiram , Neuroblastoma , Animais , Criança , Humanos , Camundongos , Dissuasores de Álcool/farmacologia , Dissuasores de Álcool/uso terapêutico , Linhagem Celular Tumoral , Dissulfiram/farmacologia , Dissulfiram/uso terapêutico , Regulação para Baixo , Reposicionamento de Medicamentos , Emulsões/uso terapêutico , Histona Acetiltransferases/efeitos dos fármacos , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genéticaRESUMO
ETV6 transcriptional activity is critical for proper blood cell development in the bone marrow. Despite the accumulating body of evidence linking ETV6 malfunction to hematological malignancies, its regulatory network remains unclear. To uncover genes that modulate ETV6 repressive transcriptional activity, we performed a specifically designed, unbiased genome-wide shRNA screen in pre-B acute lymphoblastic leukemia cells. Following an extensive validation process, we identified 13 shRNAs inducing overexpression of ETV6 transcriptional target genes. We showed that the silencing of AKIRIN1, COMMD9, DYRK4, JUNB, and SRP72 led to an abrogation of ETV6 repressive activity. We identified critical modulators of the ETV6 function which could participate in cellular transformation through the ETV6 transcriptional network.
RESUMO
Aim: Cardiovascular disease represents one of the main causes of secondary morbidity and mortality in patients with childhood cancer. Patients & methods: To further address this issue, we analyzed cardiovascular complications in relation to common and rare genetic variants derived through whole-exome sequencing from childhood acute lymphoblastic leukemia survivors (PETALE cohort). Results: Significant associations were detected among common variants in the TTN gene, left ventricular ejection fraction (p ≤ 0.0005), and fractional shortening (p ≤ 0.001). Rare variants enrichment in the NOS1, ABCG2 and NOD2 was observed in relation to left ventricular ejection fraction, and in NOD2 and ZNF267 genes in relation to fractional shortening. Following stratification according to risk groups, the modulatory effect of rare variants was additionally found in the CBR1, ABCC5 and AKR1C3 genes. None of the associations was replicated in St-Jude Lifetime Cohort Study. Conclusion: Further studies are needed to confirm whether the described genetic markers may be useful in identifying patients at increased risk of these complications.
Assuntos
Sobreviventes de Câncer , Doenças Cardiovasculares/genética , Sequenciamento do Exoma/métodos , Variação Genética/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Adolescente , Adulto , Antineoplásicos/efeitos adversos , Doenças Cardiovasculares/induzido quimicamente , Doenças Cardiovasculares/epidemiologia , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/epidemiologia , Adulto JovemRESUMO
The most frequent complication of allogeneic hematopoietic stem cell transplantation is acute Graft versus Host Disease (aGVHD). Proliferation and differentiation of donor T cells initiate inflammatory response affecting the skin, liver, and gastrointestinal tract. Besides recipient-donor HLA disparities, disease type, and the conditioning regimen, variability in the non-HLA genotype have an impact on aGVHD onset, and genetic variability of key cytokines and chemokines was associated with increased risk of aGVHD. To get further insight into the recipient genetic component of aGVHD grades 2-4 in pediatric patients, we performed an exome-wide association study in a discovery cohort (n = 87). Nine loci sustained correction for multiple testing and were analyzed in a validation group (n = 168). Significant associations were replicated for ERC1 rs1046473, PLEK rs3816281, NOP9 rs2332320 and SPRED1 rs11634702 variants through the interaction with non-genetic factors. The ERC1 variant was significant among patients that received the transplant from HLA-matched related individuals (p = 0.03), bone marrow stem cells recipients (p = 0.007), and serotherapy-negative patients (p = 0.004). NOP9, PLEK, and SPRED1 effects were modulated by stem cell source, and serotherapy (p < 0.05). Furthermore, ERC1 and PLEK SNPs correlated with aGVHD 3-4 independently of non-genetic covariates (p = 0.02 and p = 0.003). This study provides additional insight into the genetic component of moderate to severe aGVHD.
Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Doença Aguda , Criança , Predisposição Genética para Doença/etiologia , Doença Enxerto-Hospedeiro/genética , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Doadores de Tecidos , Condicionamento Pré-Transplante/efeitos adversosRESUMO
PURPOSE: Embryonal rhabdomyosarcoma (eRMS) is the most common type of rhabdomyosarcoma in children. eRMS is characterized by malignant skeletal muscle cells driven by hyperactivation of several oncogenic pathways including the MYC pathway. Targeting MYC in cancer has been extremely challenging. Recently, we have demonstrated that the heart failure drug, proscillaridin A, produced anticancer effects with specificity toward MYC expressing leukemia cells. We also reported that decitabine, a hypomethylating drug, synergizes with proscillaridin A in colon cancer cells. Here, we investigated whether proscillaridin A exhibits epigenetic and anticancer activity against eRMS RD cells, overexpressing MYC oncogene, and its combination with decitabine. METHODS: We investigated the anticancer effects of proscillaridin A in eRMS RD cells in vitro. In response to drug treatment, we measured growth inhibition, cell cycle arrest, loss of clonogenicity and self-renewal capacity. We further evaluated the impact of proscillaridin A on MYC expression and its downstream transcriptomic effects by RNA sequencing. Then, we measured protein expression of epigenetic regulators and their associated chromatin post-translational modifications in response to drug treatment. Chromatin immunoprecipitation sequencing data sets were coupled with transcriptomic results to pinpoint the impact of proscillaridin A on gene pathways associated with specific chromatin modifications. Lastly, we evaluated the effect of the combination of proscillaridin A and the DNA demethylating drug decitabine on eRMS RD cell growth and clonogenic potential. RESULTS: Clinically relevant concentration of proscillaridin A (5 nM) produced growth inhibition, cell cycle arrest and loss of clonogenicity in eRMS RD cells. Proscillaridin A produced a significant downregulation of MYC protein expression and inhibition of oncogenic transcriptional programs controlled by MYC, involved in cell replication. Interestingly, significant reduction in total histone 3 acetylation and on specific lysine residues (lysine 9, 14, 18, and 27 on histone 3) was associated with significant protein downregulation of a series of lysine acetyltransferases (KAT3A, KAT3B, KAT2A, KAT2B, and KAT5). In addition, proscillaridin A produced synergistic growth inhibition and loss of clonogenicity when combined with the approved DNA demethylating drug decitabine. CONCLUSION: Proscillaridin A produces anticancer and epigenetic effects in the low nanomolar range and its combination with decitabine warrants further investigation for the treatment of eRMS.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Proscilaridina/farmacologia , Rabdomiossarcoma Embrionário/tratamento farmacológico , Acetilação/efeitos dos fármacos , Linhagem Celular Tumoral , Autorrenovação Celular/efeitos dos fármacos , Decitabina/administração & dosagem , Reposicionamento de Medicamentos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Histonas/metabolismo , Humanos , Lisina/metabolismo , Proteínas de Neoplasias , Regiões Promotoras Genéticas/efeitos dos fármacos , Proscilaridina/administração & dosagem , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Rabdomiossarcoma Embrionário/genética , Rabdomiossarcoma Embrionário/patologiaRESUMO
Aim: To determine the role of single nucleotide polymorphisms (SNPs) in noncoding RNAs in childhood acute lymphoblastic leukemia (ALL) subtypes. Materials & methods: We screened all SNPs in 130 pre-miRNA genes to assess their role in the susceptibility of the most common subtypes of ALL: hyperdiploid and ETV6-RUNX1. Results: In two independent cohorts, we found a significant association between rs10406069 in miR-5196 and the risk of developing hyperdiploid ALL. This observation could be explained by the impact of the SNP on miR-5196 expression and in turn, in its target genes. Indeed, rs10406069 was associated with expression changes in SMC1A, a gene involved in sister chromatin cohesion. Conclusion: rs10406069 in miR-5196 may have a relevant role in hyperdiploid ALL risk.
Assuntos
MicroRNAs/genética , Polimorfismo de Nucleotídeo Único , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Adolescente , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Criança , Pré-Escolar , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core , Diploide , Feminino , Regulação Leucêmica da Expressão Gênica , Técnicas de Genotipagem , Humanos , Lactente , Masculino , Proteínas de Fusão Oncogênica , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genéticaRESUMO
Aim: To evaluate the association between human leukocyte antigen (HLA) alleles and native Escherichia coli asparaginase hypersensitivity (AH) in children with acute lymphoblastic leukemia (ALL) who received Dana-Farber Cancer Institute treatment protocols. Patients & methods:HLA-DQA1, HLA-DRB1 and HLA-DQB1 alleles were retrieved from available whole exome sequencing data of a subset of childhood ALL patients from Quebec ALL cohort and analyzed for an association with AH. PCR assay was developed to analyze associated alleles in the entire discovery and replication cohorts. Results: Two alleles in linkage disequilibrium (HLA-DRB1*07:01 and DQA1*02:01) were associated with AH. Additional analyses, performed to distinguish between HLA-DRB1*07:01 haplotypes with and without DQB1*02:02 allele, showed that the association was dependent on the presence of DQB1*02:02. Conclusion: This study confirms the implication of HLA-DRB1*07:01, DQA1*02:01 and DQB1*02:02 alleles in developing AH in childhood ALL.
Assuntos
Asparaginase/metabolismo , Cadeias alfa de HLA-DQ/genética , Cadeias beta de HLA-DQ/genética , Cadeias HLA-DRB1/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/enzimologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/epidemiologia , Quebeque/epidemiologiaRESUMO
Childhood acute lymphoblastic leukemia (cALL) is the most common pediatric cancer. It is characterized by bone marrow lymphoid precursors that acquire genetic alterations, resulting in disrupted maturation and uncontrollable proliferation. More than a dozen molecular subtypes of variable severity can be used to classify cALL cases. Modern therapy protocols currently cure 85-90% of cases, but other patients are refractory or will relapse and eventually succumb to their disease. To better understand intratumor heterogeneity in cALL patients, we investigated the nature and extent of transcriptional heterogeneity at the cellular level by sequencing the transcriptomes of 39,375 individual cells in eight patients (six B-ALL and two T-ALL) and three healthy pediatric controls. We observed intra-individual transcriptional clusters in five out of the eight patients. Using pseudotime maturation trajectories of healthy B and T cells, we obtained the predicted developmental state of each leukemia cell and observed distribution shifts within patients. We showed that the predicted developmental states of these cancer cells are inversely correlated with ribosomal protein expression levels, which could be a common contributor to intra-individual heterogeneity in cALL patients.
Assuntos
Biomarcadores Tumorais/genética , Regulação da Expressão Gênica no Desenvolvimento , Heterogeneidade Genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Proteínas Ribossômicas/genética , Análise de Célula Única/métodos , Biomarcadores Tumorais/metabolismo , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/classificação , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Proteínas Ribossômicas/metabolismo , Sequenciamento do Exoma/métodosRESUMO
Sinusoidal obstruction syndrome (SOS) is a well-recognized and potentially life-threatening complication of hematopoietic stem cell transplantation (HSCT). SOS arises from endothelial cell damage and hepatocellular injury mostly due to the transplantation conditioning regimens but also to other patient, disease, and treatment-related factors. Understanding risk factors associated with the development of SOS is critical for early initiation of treatment or prophylaxis. The knowledge about genetic contribution is limited; few studies investigated so far selected a set of genes. To get more comprehensive insight in the genetic component, we performed an exome-wide association study using genetic variants derived from whole-exome sequencing. The analyses were performed in a discovery cohort composed of 87 pediatric patients undergoing HSCT following a busulfan-containing conditioning regimen. Eight lead single-nucleotide polymorphisms (SNPs) were identified after correction for multiple testing and subsequently analyzed in a validation cohort (n = 182). Three SNPs were successfully replicated, including rs17146905 (P = .001), rs16931326 (P = .04), and rs2289971 (P = .03), located respectively in the UGT2B10, BHLHE22, and KIAA1715 genes. UGT2B10 and KIAA1715 were retained in a multivariable model while controlling for nongenetic covariates and previously identified risk variants in the GSTA1 promoter. The modulation of associations by conditioning regimens was noted; KIAA1715 was dependent on the intensity of the conditioning regimen, whereas the effect of UGT2B10 was equally applicable to all of them. Combined effect of associated loci was also observed (P = .00006) with a genotype-related SOS risk of 9.8. To our knowledge, this is the first study addressing the genetic component of SOS at an exome-wide level and identifying novel genetic variations conferring a higher risk of SOS, which might be useful for personalized prevention and treatment strategies.
Assuntos
Transplante de Células-Tronco Hematopoéticas , Hepatopatia Veno-Oclusiva , Bussulfano/efeitos adversos , Criança , Predisposição Genética para Doença , Glucuronosiltransferase , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Hepatopatia Veno-Oclusiva/genética , Humanos , Condicionamento Pré-Transplante/efeitos adversosRESUMO
Aim: To evaluate top-ranking genes identified through genome-wide association studies for an association with corticosteroid-related osteonecrosis in children with acute lymphoblastic leukemia (ALL) who received Dana-Farber Cancer Institute treatment protocols. Patients & methods: Lead SNPs from these studies, as well as other variants in the same genes, pooled from whole exome sequencing data, were analyzed for an association with osteonecrosis in childhood ALL patients from Quebec cohort. Top-ranking variants were verified in the replication patient group. Results: The analyses of variants in the ACP1-SH3YL1 locus derived from whole exome sequencing data showed an association of several correlated SNPs (rs11553746, rs2290911, rs7595075, rs2306060 and rs79716074). The rs79716074 defines *B haplotype of the APC1 gene, which is well known for its functional role. Conclusion: This study confirms implication of the ACP1 gene in the treatment-related osteonecrosis in childhood ALL and identifies novel, potentially causal variant of this complication.
Assuntos
Proteínas de Membrana/genética , Osteonecrose/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Proteínas Tirosina Fosfatases/genética , Proteínas Proto-Oncogênicas/genética , Adolescente , Corticosteroides/administração & dosagem , Corticosteroides/efeitos adversos , Criança , Pré-Escolar , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Haplótipos/genética , Humanos , Masculino , Osteonecrose/induzido quimicamente , Osteonecrose/patologia , Polimorfismo de Nucleotídeo Único/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/complicações , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Intervalo Livre de Progressão , Sequenciamento do ExomaRESUMO
BACKGROUND: A substantial number of survivors of childhood acute lymphoblastic leukemia suffer from treatment-related late adverse effects including neurocognitive impairment. While multiple studies have described neurocognitive outcomes in childhood acute lymphoblastic leukemia (ALL) survivors, relatively few have investigated their association with individual genetic constitution. METHODS: To further address this issue, genetic variants located in 99 genes relevant to the effects of anticancer drugs and in 360 genes implicated in nervous system function and predicted to affect protein function, were pooled from whole exome sequencing data of childhood ALL survivors (PETALE cohort) and analyzed for an association with neurocognitive complications, as well as with anxiety and depression. Variants that sustained correction for multiple testing were genotyped in entire cohort (n = 236) and analyzed with same outcomes. RESULTS: Common variants in MTR, PPARA, ABCC3, CALML5, CACNB2 and PCDHB10 genes were associated with deficits in neurocognitive tests performance, whereas a variant in SLCO1B1 and EPHA5 genes was associated with anxiety and depression. Majority of associations were modulated by intensity of treatment. Associated variants were further analyzed in an independent SJLIFE cohort of 545 ALL survivors. Two variants, rs1805087 in methionine synthase, MTR and rs58225473 in voltage-dependent calcium channel protein encoding gene, CACNB2 are of particular interest, since associations of borderline significance were found in replication cohort and remain significant in combined discovery and replication groups (OR = 1.5, 95% CI, 1-2.3; p = 0.04 and; OR = 3.7, 95% CI, 1.25-11; p = 0.01, respectively). Variant rs4149056 in SLCO1B1 gene also deserves further attention since previously shown to affect methotrexate clearance and short-term toxicity in ALL patients. CONCLUSIONS: Current findings can help understanding of the influence of genetic component on long-term neurocognitive impairment. Further studies are needed to confirm whether identified variants may be useful in identifying survivors at increased risk of these complications.
Assuntos
Antimetabólitos Antineoplásicos/efeitos adversos , Antimetabólitos Antineoplásicos/uso terapêutico , Ansiedade/genética , Depressão/genética , Transtornos Neurocognitivos/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/genética , Adolescente , Adulto , Ansiedade/induzido quimicamente , Canais de Cálcio Tipo L/genética , Criança , Pré-Escolar , Estudos de Coortes , Depressão/induzido quimicamente , Feminino , Humanos , Lactente , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Assistência de Longa Duração , Masculino , Metotrexato/efeitos adversos , Metotrexato/uso terapêutico , Transtornos Neurocognitivos/induzido quimicamente , Leucemia-Linfoma Linfoblástico de Células Precursoras/psicologia , Sobreviventes , Adulto JovemRESUMO
BACKGROUND: Cardiac glycosides are approved for the treatment of heart failure as Na+/K+ pump inhibitors. Their repurposing in oncology is currently investigated in preclinical and clinical studies. However, the identification of a specific cancer type defined by a molecular signature to design targeted clinical trials with cardiac glycosides remains to be characterized. Here, we demonstrate that cardiac glycoside proscillaridin A specifically targets MYC overexpressing leukemia cells and leukemia stem cells by causing MYC degradation, epigenetic reprogramming and leukemia differentiation through loss of lysine acetylation. METHODS: Proscillaridin A anticancer activity was investigated against a panel of human leukemia and solid tumor cell lines with different MYC expression levels, overexpression in vitro systems and leukemia stem cells. RNA-sequencing and differentiation studies were used to characterize transcriptional and phenotypic changes. Drug-induced epigenetic changes were studied by chromatin post-translational modification analysis, expression of chromatin regulators, chromatin immunoprecipitation, and mass-spectrometry. RESULTS: At a clinically relevant dose, proscillaridin A rapidly altered MYC protein half-life causing MYC degradation and growth inhibition. Transcriptomic profile of leukemic cells after treatment showed a downregulation of genes involved in MYC pathways, cell replication and an upregulation of hematopoietic differentiation genes. Functional studies confirmed cell cycle inhibition and the onset of leukemia differentiation even after drug removal. Proscillaridin A induced a significant loss of lysine acetylation in histone H3 (at lysine 9, 14, 18 and 27) and in non-histone proteins such as MYC itself, MYC target proteins, and a series of histone acetylation regulators. Global loss of acetylation correlated with the rapid downregulation of histone acetyltransferases. Importantly, proscillaridin A demonstrated anticancer activity against lymphoid and myeloid stem cell populations characterized by MYC overexpression. CONCLUSION: Overall, these results strongly support the repurposing of proscillaridin A in MYC overexpressing leukemia.