RESUMO
OBJECTIVE: To summarize the literature on pharmacotherapy for managing paediatric obesity. METHODS: A systematic review and meta-analysis were conducted of randomized controlled trials (RCTs) with <18-year-olds of pharmacotherapeutic agents published up to November 2022. Estimates of effect for outcomes were presented relative to minimal important differences and GRADE certainty of evidence. We examined data on patient/proxy-reported outcome measures (PROMs), cardiometabolic risk factors, anthropometry and adverse events (AEs). RESULTS: Overall, 35 RCTs were included. Trials examined metformin (n = 26), glucagon-like peptide-1 receptor agonists (GLP1RAs) (n = 7) and a lipase inhibitor (orlistat; n = 2). Intervention duration varied (3-24 months). Metformin had little to no benefit on PROMs (e.g., health-related quality of life [HRQoL]; 6 RCTs), moderate reductions in triglycerides, a moderate decline in insulin resistance, a small to moderate decline in BMI z-score (BMIz) and a moderate increase in mild to moderate gastrointestinal AEs. Response to GLP1RAs was heterogeneous and results of subgroup analysis demonstrated variability of impact. Liraglutide (2 RCTs) resulted in a small reduction in HOMA-IR and BMIz, but little to no benefit on other outcomes. Exenatide (4 RCTs) had a moderate reduction on blood pressure and a small decrease in BMIz with little to no benefit on other outcomes. Semaglutide (1 RCT) had a small benefit on HRQoL, a small reduction on SBP, a moderate reduction on total cholesterol and LDL-cholesterol, a large reduction on triglyceride, and a very large decline in BMIz accompanied by a small increase in mild to moderate gastrointestinal AEs. Orlistat had a moderate reduction in DBP and little to no benefit in other outcomes measured, but had a very large increased risk of mild to moderate gastrointestinal AEs. Serious AEs were rare and for interventions with sufficent AE reporting, were considered not likely attributable to the interventions. CONCLUSION: Few studies examined the impact of pharmacotherapy on PROMs. There is evidence that metformin and GLP1RAs lead to important improvements in cardiometabolic and anthropometric outcomes while accompanied by mild to moderate AEs. Long-term effectiveness and safety of GLP1RAs remain to be evaluated.
Assuntos
Fármacos Antiobesidade , Obesidade Infantil , Humanos , Criança , Adolescente , Obesidade Infantil/tratamento farmacológico , Fármacos Antiobesidade/uso terapêutico , Hipoglicemiantes/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto , Guias de Prática Clínica como Assunto , Metformina/uso terapêutico , Resultado do Tratamento , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistasRESUMO
Metabolic rewiring is essential for tumor growth and progression to metastatic disease, yet little is known regarding how cancer cells modify their acquired metabolic programs in response to different metastatic microenvironments. We have previously shown that liver-metastatic breast cancer cells adopt an intrinsic metabolic program characterized by increased HIF-1α activity and dependence on glycolysis. Here, we confirm by in vivo stable isotope tracing analysis (SITA) that liver-metastatic breast cancer cells retain a glycolytic profile when grown as mammary tumors or liver metastases. However, hepatic metastases exhibit unique metabolic adaptations including elevated expression of genes involved in glutathione (GSH) biosynthesis and reactive oxygen species (ROS) detoxification when compared to mammary tumors. Accordingly, breast-cancer-liver-metastases exhibited enhanced de novo GSH synthesis. Confirming their increased capacity to mitigate ROS-mediated damage, liver metastases display reduced levels of 8-Oxo-2'-deoxyguanosine. Depletion of the catalytic subunit of the rate-limiting enzyme in glutathione biosynthesis, glutamate-cysteine ligase (GCLC), strongly reduced the capacity of breast cancer cells to form liver metastases, supporting the importance of these distinct metabolic adaptations. Loss of GCLC also affected the early steps of the metastatic cascade, leading to decreased numbers of circulating tumor cells (CTCs) and impaired metastasis to the liver and the lungs. Altogether, our results indicate that GSH metabolism could be targeted to prevent the dissemination of breast cancer cells.
Assuntos
Neoplasias da Mama , Glutamato-Cisteína Ligase , Glutationa , Homeostase , Neoplasias Hepáticas , Oxirredução , Espécies Reativas de Oxigênio , Feminino , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Humanos , Glutationa/metabolismo , Animais , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/genética , Camundongos , Linhagem Celular Tumoral , Glutamato-Cisteína Ligase/metabolismo , Glutamato-Cisteína Ligase/genética , Glicólise , Metástase Neoplásica , Regulação Neoplásica da Expressão Gênica , Microambiente TumoralRESUMO
PURPOSE: The purpose of this work was to detail our center's experience in transitioning from a Co-60 treatment technique to an intensity modulated radiation therapy (IMRT) based lateral-field extended source-to-axis distance (e-SAD) technique for total body irradiation (TBI). MATERIALS AND METHODS: An existing beam model in RayStation v.10A was validated for the use of e-SAD TBI treatments. Data were acquired with an Elekta Synergy linear accelerator (LINAC) at an extended source-to-surface distance of 365 cm with an 18 MV beam. Beam model validation measurements included percentage depth dose (PDD), profile data, surface dose, build-up region and transmission measurements. End-to-end testing was carried out using an anthropomorphic phantom. Treatments were performed in a supine position in a whole-body Vac-Lok at an e-SAD of 400 cm with a beam spoiler 10 cm from the couch. Planning was achieved using IMRT, where multi-leaf collimators were used to modulate the beam and shield the organs at risk. Beam's eye view projection images were used for in-room patient positioning and in-vivo dosimetry was performed for every treatment. RESULTS: The percent difference between the measured and calculated PDD and profiles was less than 2% at all locations. Surface dose was 83.8% of the maximum dose with the beam spoiler at a 10 cm distance from the phantom. The largest percent difference between the treatment planning system (TPS) and measured data within the anthropomorphic phantom was approximately 2%. In-vivo dosimetry measurements yielded results within the 5% institutional threshold. CONCLUSION: In 2022, 17 patients were successfully treated using the new IMRT-based lateral-field e-SAD TBI technique. The resulting clinical plans respected the institutional standard. The commissioning process, as well as the treatment planning and delivery aspects were described in this work with the intention of supporting other clinics in implementing this treatment method.
Assuntos
Radioisótopos de Cobalto , Órgãos em Risco , Aceleradores de Partículas , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Irradiação Corporal Total , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Irradiação Corporal Total/métodos , Aceleradores de Partículas/instrumentação , Órgãos em Risco/efeitos da radiação , Radioisótopos de Cobalto/uso terapêutico , Neoplasias/radioterapiaRESUMO
BACKGROUND AND AIMS: Dysregulated cholesterol metabolism is a hallmark of atherosclerotic cardiovascular diseases, yet our understanding of how endogenous cholesterol synthesis affects atherosclerosis is not clear. The energy sensor AMP-activated protein kinase (AMPK) phosphorylates and inhibits the rate-limiting enzyme in the mevalonate pathway HMG-CoA reductase (HMGCR). Recent work demonstrated that when AMPK-HMGCR signaling was compromised in an Apoe-/- model of hypercholesterolemia, atherosclerosis was exacerbated due to elevated hematopoietic stem and progenitor cell mobilization and myelopoiesis. We sought to validate the significance of the AMPK-HMGCR signaling axis in atherosclerosis using a non-germline hypercholesterolemia model with functional ApoE. METHODS: Male and female HMGCR S871A knock-in (KI) mice and wild-type (WT) littermate controls were made atherosclerotic by intravenous injection of a gain-of-function Pcsk9D374Y-adeno-associated virus followed by high-fat and high-cholesterol atherogenic western diet feeding for 16 weeks. RESULTS: AMPK activation suppressed endogenous cholesterol synthesis in primary bone marrow-derived macrophages from WT but not HMGCR KI mice, without changing other parameters of cholesterol regulation. Atherosclerotic plaque area was unchanged between WT and HMGCR KI mice, independent of sex. Correspondingly, there were no phenotypic differences observed in hematopoietic progenitors or differentiated immune cells in the bone marrow, blood, or spleen, and no significant changes in systemic markers of inflammation. When lethally irradiated female mice were transplanted with KI bone marrow, there was similar plaque content relative to WT. CONCLUSIONS: Given previous work, our study demonstrates the importance of preclinical atherosclerosis model comparison and brings into question the importance of AMPK-mediated control of cholesterol synthesis in atherosclerosis.
Assuntos
Proteínas Quinases Ativadas por AMP , Aterosclerose , Colesterol , Hidroximetilglutaril-CoA Redutases , Pró-Proteína Convertase 9 , Animais , Feminino , Masculino , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Aterosclerose/metabolismo , Aterosclerose/patologia , Aterosclerose/genética , Aterosclerose/enzimologia , Células Cultivadas , Colesterol/biossíntese , Colesterol/metabolismo , Colesterol/sangue , Modelos Animais de Doenças , Hidroximetilglutaril-CoA Redutases/metabolismo , Hipercolesterolemia/metabolismo , Hipercolesterolemia/enzimologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Placa Aterosclerótica , Pró-Proteína Convertase 9/metabolismo , Pró-Proteína Convertase 9/genética , Transdução de SinaisRESUMO
BACKGROUND: Adolescents living with obesity (AlwO) can have limited exercise capacity. Exercise capacity can be predicted by a 2-factor model comprising lung function and leg muscle function, but no study has looked at cycling leg muscle function and its contribution to cycling exercise capacity in AlwO. METHODS: Twenty-two nonobese adolescents and 22 AlwO (BMI > 95 percentile) were studied. Anthropometry, body composition (dual-energy X-ray absorptiometry), spirometry, 30-s isokinetic work capacity, and maximal exercise (cycle ergometry) were measured. RESULTS: AlwO had greater total body mass, lean body mass, and lean leg mass (LLM). Lung function trended higher in AlwO. Leg 30-s work did not differ in absolute terms or per allometrically scaled LLM. Peak oxygen consumption did not differ between the groups in absolute terms or as percent predicted values (79.59 ± 14.6 vs. 82.3 ± 11.2% predicted control versus ALwO) but was lower in AlwO when expressed per kg body mass, kg lean body mass, scaled lean body mass, and LLM. Peak oxygen consumption related to both lung function and 30-s work, with no observed group effect. 30-s leg work related to the scaled LLM, with a small group effect. There was some correlation between leg work and time spent in moderate to vigorous physical activity in AlwO (rs = 0.39, p = .07). CONCLUSION: AlwO have larger LLM and preserved exercise capacity, when expressed as percentage of predicted, but not per allometrically scaled LLM. Increasing time spent in moderate to vigorous activity may benefit AlwO.
Assuntos
Composição Corporal , Tolerância ao Exercício , Músculo Esquelético , Consumo de Oxigênio , Humanos , Adolescente , Masculino , Feminino , Consumo de Oxigênio/fisiologia , Tolerância ao Exercício/fisiologia , Músculo Esquelético/fisiopatologia , Músculo Esquelético/fisiologia , Músculo Esquelético/diagnóstico por imagem , Teste de Esforço , Perna (Membro)/fisiopatologia , Obesidade Infantil/fisiopatologia , Espirometria , Índice de Massa Corporal , Obesidade/fisiopatologia , Absorciometria de Fóton , Exercício Físico/fisiologiaRESUMO
Significant efforts have focused on identifying targetable genetic drivers that support the growth of solid tumors and/or increase metastatic ability. During tumor development and progression to metastatic disease, physiological and pharmacological selective pressures influence parallel adaptive strategies within cancer cell sub-populations. Such adaptations allow cancer cells to withstand these stressful microenvironments. This Darwinian model of stress adaptation often prevents durable clinical responses and influences the emergence of aggressive cancers with increased metastatic fitness. However, the mechanisms contributing to such adaptive stress responses are poorly understood. We now demonstrate that the p66ShcA redox protein, itself a ROS inducer, is essential for survival in response to physiological stressors, including anchorage independence and nutrient deprivation, in the context of poor outcome breast cancers. Mechanistically, we show that p66ShcA promotes both glucose and glutamine metabolic reprogramming in breast cancer cells, to increase their capacity to engage catabolic metabolism and support glutathione synthesis. In doing so, chronic p66ShcA exposure contributes to adaptive stress responses, providing breast cancer cells with sufficient ATP and redox balance needed to withstand such transient stressed states. Our studies demonstrate that p66ShcA functionally contributes to the maintenance of aggressive phenotypes and the emergence of metastatic disease by forcing breast tumors to adapt to chronic and moderately elevated levels of oxidative stress.
Assuntos
Neoplasias da Mama , Humanos , Feminino , Proteínas Adaptadoras da Sinalização Shc/genética , Proteínas Adaptadoras da Sinalização Shc/metabolismo , Neoplasias da Mama/metabolismo , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo , Estresse Oxidativo/fisiologia , Fenótipo , Linhagem Celular Tumoral , Microambiente TumoralRESUMO
AIMS: PCSK9 inhibition intensively lowers low density lipoprotein cholesterol and is well tolerated in adults and paediatric patients with familial hypercholesterolaemia (FH). HAUSER-RCT showed that 24 weeks of treatment with evolocumab in paediatric patients did not affect cognitive function. This study determined the effects of 80 additional weeks of evolocumab treatment on cognitive function in paediatric patients with heterozygous FH. METHODS AND RESULTS: HAUSER-OLE was an 80-week open-label extension of HAUSER-RCT, a randomized, double-blind, 24-week trial evaluating the efficacy and safety of evolocumab in paediatric patients (ages 10-17 years) with FH. During the OLE, all patients received monthly 420â mg subcutaneous evolocumab injections. Tests of psychomotor function, attention, visual learning, and executive function were administered at baseline and Weeks 24 and 80 of the OLE. Changes over time were analysed descriptively and using analysis of covariance. Cohen's d statistic was used to evaluate the magnitude of treatment effects. Analysis of covariance results indicated no decrease in performance across visits during 80 weeks of evolocumab treatment for Groton Maze Learning, One Card Learning accuracy, Identification speed, or Detection speed (all P > 0.05). Performance on all tasks was similar for those who received placebo or evolocumab in the RCT (all P > 0.05). For all tests, the least square mean differences between patients who received placebo vs. evolocumab in the parent study were trivial (all Cohen's d magnitude < 0.2). CONCLUSION: In paediatric patients with FH, 80 weeks of open-label evolocumab treatment had no negative impact on cognitive function. REGISTRATION: ClinicalTrials.gov identifier: NCT02624869.
Some children are born with a genetic disorder that causes high cholesterol, which leads to heart disease. Children with high cholesterol can be treated with evolocumab, a medication that lowers blood cholesterol. Because cholesterol is important for development and adequate function of the brain, there is a concern that lowering cholesterol in children may affect mental ability. In this study, we tested whether treating children with evolocumab for 80 weeks affected mental ability in performing several tasks. A battery of tests that measure executive function (Groton Maze Learning Test), visual learning (One Card Learning Test), visual attention (Identification Test), and psychomotor function (Detection Test) showed no decrease in performance across visits during 80 weeks of evolocumab treatment. Performance on all tasks was similar for the children who received placebo for the first 24 weeks then received evolocumab for an additional 80 weeks (placebo/evolocumab) and those who received evolocumab for 24 weeks then received evolocumab for an additional 80 weeks (evolocumab/evolocumab).
Assuntos
Anticorpos Monoclonais Humanizados , Anticolesterolemiantes , Hiperlipoproteinemia Tipo II , Adulto , Humanos , Criança , Pró-Proteína Convertase 9 , Anticolesterolemiantes/efeitos adversos , Anticorpos Monoclonais/uso terapêutico , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/tratamento farmacológico , Cognição , Resultado do Tratamento , Método Duplo-CegoRESUMO
In solid tumors, drug concentrations decrease with distance from blood vessels. However, cellular adaptations accompanying the gradated exposure of cancer cells to drugs are largely unknown. Here, we modeled the spatiotemporal changes promoting chemotherapy resistance in breast cancer. Using pairwise cell competition assays at each step during the acquisition of chemoresistance, we reveal an important priming phase that renders cancer cells previously exposed to sublethal drug concentrations refractory to dose escalation. Therapy-resistant cells throughout the concentration gradient display higher expression of the solute carriers SLC38A7 and SLC46A1 and elevated intracellular concentrations of their associated metabolites. Reduced levels of SLC38A7 and SLC46A1 diminish the proliferative potential of cancer cells, and elevated expression of these SLCs in breast tumors from patients correlates with reduced survival. Our work provides mechanistic evidence to support dose-intensive treatment modalities for patients with solid tumors and reveals two members of the SLC family as potential actionable targets.
Assuntos
Neoplasias da Mama , Neoplasias Mamárias Animais , Animais , Humanos , Feminino , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Mama/metabolismo , Transportador de Folato Acoplado a PrótonRESUMO
Type 2 cytokines like IL-4 are hallmarks of helminth infection and activate macrophages to limit immunopathology and mediate helminth clearance. In addition to cytokines, nutrients and metabolites critically influence macrophage polarization. Choline is an essential nutrient known to support normal macrophage responses to lipopolysaccharide; however, its function in macrophages polarized by type 2 cytokines is unknown. Using murine IL-4-polarized macrophages, targeted lipidomics revealed significantly elevated levels of phosphatidylcholine, with select changes to other choline-containing lipid species. These changes were supported by the coordinated up-regulation of choline transport compared to naïve macrophages. Pharmacological inhibition of choline metabolism significantly suppressed several mitochondrial transcripts and dramatically inhibited select IL-4-responsive transcripts, most notably, Retnla. We further confirmed that blocking choline metabolism diminished IL-4-induced RELMα (encoded by Retnla) protein content and secretion and caused a dramatic reprogramming toward glycolytic metabolism. To better understand the physiological implications of these observations, naïve or mice infected with the intestinal helminth Heligmosomoides polygyrus were treated with the choline kinase α inhibitor, RSM-932A, to limit choline metabolism in vivo. Pharmacological inhibition of choline metabolism lowered RELMα expression across cell-types and tissues and led to the disappearance of peritoneal macrophages and B-1 lymphocytes and an influx of infiltrating monocytes. The impaired macrophage activation was associated with some loss in optimal immunity to H. polygyrus, with increased egg burden. Together, these data demonstrate that choline metabolism is required for macrophage RELMα induction, metabolic programming, and peritoneal immune homeostasis, which could have important implications in the context of other models of infection or cancer immunity.
Assuntos
Interleucina-4 , Ativação de Macrófagos , Animais , Camundongos , Colina/metabolismo , Citocinas/metabolismo , Interleucina-4/metabolismo , Macrófagos , Camundongos Endogâmicos C57BL , Regulação para CimaRESUMO
Skin plays central roles in systemic physiology, and it undergoes significant functional changes during aging. Members of the peroxisome proliferator-activated receptor-gamma coactivator (PGC-1) family (PGC-1s) are key regulators of the biology of numerous tissues, yet we know very little about their impact on skin functions. Global gene expression profiling and gene silencing in keratinocytes uncovered that PGC-1s control the expression of metabolic genes as well as that of terminal differentiation programs. Glutamine emerged as a key substrate promoting mitochondrial respiration, keratinocyte proliferation, and the expression of PGC-1s and terminal differentiation programs. Importantly, gene silencing of PGC-1s reduced the thickness of a reconstructed living human epidermal equivalent. Exposure of keratinocytes to a salicylic acid derivative potentiated the expression of PGC-1s and terminal differentiation genes and increased mitochondrial respiration. Overall, our results show that the PGC-1s are essential effectors of epidermal physiology, revealing an axis that could be targeted in skin conditions and aging.
RESUMO
BACKGROUND: Multicomponent lifestyle interventions are fundamental in pediatric obesity management. However, whether household food insecurity influences the efficacy of such interventions remains undocumented. OBJECTIVES: The objective was to compare changes in BMI z-score (BMIz) among children whose family received lifestyle counseling at a pediatric obesity management clinic in Montréal (Canada) according to their household food security status. METHODS: This is a retrospective, longitudinal analysis of medical records of children (2-17 y) with overweight or obesity who received lifestyle counseling at a pediatric obesity management clinic. The number of visits at the clinic and the duration of the follow-up were individualized. Household food security status was assessed using the Health Canada's Household Food Security Survey Module at the first visit at the clinic. BMIz was calculated and updated at each visit. A reduction of ≥0.25 in BMIz between the last and the first visit at the clinic was considered clinically meaningful. Statistical significance was considered at P < 0.05. RESULTS: Among the 214 children included in the study, 83 (38.8%) lived in a food insecure household. In multivariable-adjusted analyses, differences in BMIz between the last and the first appointment tended to be smaller among children who lived in a food insecure household than those in children living in a food secure household [ΔBMIzfood insecurity = -0.432 (95% CI: -0.672, -0.193) compared with ΔBMIzfood security = -0.556 (95% CI: -0.792, -0.319; P = 0.14)]. Differences were most notable in the first 6 mo of follow-up. The OR of achieving a clinically significant reduction in BMIz over follow-up associated with household food insecurity, compared with household food security, was 0.57 (95% CI: 0.31, 1.05; P = 0.07). CONCLUSIONS: In this sample of children followed up at a pediatric obesity clinic, those who lived in a food insecure household experienced smaller BMIz reductions than those who lived in a food secure household.
Assuntos
Manejo da Obesidade , Obesidade Infantil , Humanos , Criança , Índice de Massa Corporal , Estudos Retrospectivos , Abastecimento de Alimentos , Obesidade Infantil/terapia , Insegurança AlimentarRESUMO
Multiple myeloma (MM) is a hematological malignancy that emerges from antibody-producing plasma B cells. Proteasome inhibitors, including the US Food and Drug Administration-approved bortezomib (BTZ) and carfilzomib (CFZ), are frequently used for the treatment of patients with MM. Nevertheless, a significant proportion of patients with MM are refractory or develop resistance to this class of inhibitors, which represents a significant challenge in the clinic. Thus, identifying factors that determine the potency of proteasome inhibitors in MM is of paramount importance to bolster their efficacy in the clinic. Using genome-wide CRISPR-based screening, we identified a subunit of the mitochondrial pyruvate carrier (MPC) complex, MPC1, as a common modulator of BTZ response in 2 distinct human MM cell lines in vitro. We noticed that CRISPR-mediated deletion or pharmacological inhibition of the MPC complex enhanced BTZ/CFZ-induced MM cell death with minimal impact on cell cycle progression. In fact, targeting the MPC complex compromised the bioenergetic capacity of MM cells, which is accompanied by reduced proteasomal activity, thereby exacerbating BTZ-induced cytotoxicity in vitro. Importantly, we observed that the RNA expression levels of several regulators of pyruvate metabolism were altered in advanced stages of MM for which they correlated with poor patient prognosis. Collectively, this study highlights the importance of the MPC complex for the survival of MM cells and their responses to proteasome inhibitors. These findings establish mitochondrial pyruvate metabolism as a potential target for the treatment of MM and an unappreciated strategy to increase the efficacy of proteasome inhibitors in the clinic.
Assuntos
Antineoplásicos , Mieloma Múltiplo , Estados Unidos , Humanos , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Antineoplásicos/uso terapêutico , Transportadores de Ácidos Monocarboxílicos/uso terapêutico , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Piruvatos/uso terapêuticoRESUMO
The ability of a patient tumor to engraft an immunodeficient mouse is the strongest known independent indicator of poor prognosis in early-stage non-small cell lung cancer (NSCLC). Analysis of primary NSCLC proteomes revealed low-level expression of mitochondrial aconitase (ACO2) in the more aggressive, engrafting tumors. Knockdown of ACO2 protein expression transformed immortalized lung epithelial cells, whereas upregulation of ACO2 in transformed NSCLC cells inhibited cell proliferation in vitro and tumor growth in vivo. High level ACO2 increased iron response element binding protein 1 (IRP1) and the intracellular labile iron pool. Impaired cellular proliferation associated with high level ACO2 was reversed by treatment of cells with an iron chelator, whereas increased cell proliferation associated with low level ACO2 was suppressed by treatment of cells with iron. Expression of CDGSH iron-sulfur (FeS) domain-containing protein 1 [CISD1; also known as mitoNEET (mNT)] was modulated by ACO2 expression level and inhibition of mNT by RNA interference or by treatment of cells with pioglitazone also increased iron and cell death. Hence, ACO2 is identified as a regulator of iron homeostasis and mNT is implicated as a target in aggressive NSCLC. IMPLICATIONS: FeS cluster-associated proteins including ACO2, mNT (encoded by CISD1), and IRP1 (encoded by ACO1) are part of an "ACO2-Iron Axis" that regulates iron homeostasis and is a determinant of a particularly aggressive subset of NSCLC.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Camundongos , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Ferro/metabolismo , Aconitato Hidratase/genética , Aconitato Hidratase/metabolismo , Homeostase , Proteínas de Membrana/metabolismo , Proteínas de Ligação ao FerroRESUMO
Objectives: Food insecurity and paediatric obesity are two major public health issues in Canada that may have been exacerbated by the COVID-19 pandemic. We assessed food insecurity and its correlates among households of children receiving care at a paediatric obesity management clinic in Montreal. We also assessed whether the prevalence of food insecurity among households of children who received care during the COVID-19 pandemic differed from those who received care before it. Methods: This is a retrospective, cross-sectional analysis of medical records of children (2 to 17 years) who received care at a paediatric obesity management clinic in Montreal (Maison de santé prévention - Approche 180 [MSP-180]). Children's household food security status was assessed using Health Canada's Household Food Security Survey Module. Results: Among the 253 children included in the study, 102 (40.3%) lived in households with moderate (n=89; 35.2%) or severe food insecurity (n=13; 5.1%). Food insecurity was more prevalent in households of children who were first- or second-generation immigrants compared with those who were third generation or more (48.3% versus 30.1%; P=0.03). Prevalence of food insecurity among households of children who received care during the COVID-19 pandemic was 5.5% higher than among those who received care before the pandemic, but the difference was not statistically significant (39.6% versus 45.1%; P=0.65). Conclusions: Forty per cent of children treated at this paediatric obesity clinic lived in a food insecure household. This prevalence may have increased during the first year of the COVID-19 pandemic, but statistical power was insufficient to confirm it.
RESUMO
Metabolic programming of the innate immune cells known as dendritic cells (DCs) changes in response to different stimuli, influencing their function. While the mechanisms behind increased glycolytic metabolism in response to inflammatory stimuli are well-studied, less is known about the programming of mitochondrial metabolism in DCs. We used lipopolysaccharide (LPS) and interferon-ß (IFN-ß), which differentially stimulate the use of glycolysis and oxidative phosphorylation (OXPHOS), respectively, to identify factors important for mitochondrial metabolism. We found that the expression of peroxisome proliferator-activated receptor gamma co-activator 1ß (PGC-1ß), a transcriptional co-activator and known regulator of mitochondrial metabolism, decreases when DCs are activated with LPS, when OXPHOS is diminished, but not with IFN-ß, when OXPHOS is maintained. We examined the role of PGC-1ß in bioenergetic metabolism of DCs and found that PGC-1ß deficiency indeed impairs their mitochondrial respiration. PGC-1ß-deficient DCs are more glycolytic compared to controls, likely to compensate for reduced OXPHOS. PGC-1ß deficiency also causes decreased capacity for ATP production at steady state and in response to IFN-ß treatment. Loss of PGC-1ß in DCs leads to increased expression of genes in inflammatory pathways, and reduced expression of genes encoding proteins important for mitochondrial metabolism and function. Collectively, these results demonstrate that PGC-1ß is a key regulator of mitochondrial metabolism and negative regulator of inflammatory gene expression in DCs.
Assuntos
Lipopolissacarídeos , PPAR gama , Trifosfato de Adenosina , Expressão Gênica , Interferon beta/genética , Interferon beta/metabolismo , Lipopolissacarídeos/farmacologia , PPAR gama/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Atherosclerosis begins in youth and is directly linked with the presence and severity of cardiovascular risk factors, including dyslipidemia. Thus, the timely identification and management of dyslipidemia in childhood might slow atherosclerotic progression and decrease the risk of cardiovascular disease in adulthood. This is particularly true for children with genetic disorders resulting in marked dyslipidemia, including familial hypercholesterolemia, which remains frequently undiagnosed. Universal and cascade screening strategies can effectively identify cases of pediatric dyslipidemia. In the clinical evaluation of children with dyslipidemia, evaluating for secondary causes of dyslipidemia, including medications and systemic disorders is essential. The first line therapy generally centres around lifestyle modifications, with dietary changes specific to the dyslipidemia phenotype. Indications for medication depend on the severity of dyslipidemia and an individualized assessment of cardiovascular risk. Despite an expanding evidence base supporting the detection and timely management of pediatric dyslipidemia, numerous knowledge gaps remain, including a sufficient evidence base to support more widespread screening, thresholds for initiation of pharmacotherapy, and treatment targets. Further studies on the most appropriate age for statin initiation and long-term safety studies of statin use in youth are also required. The most pressing matter, however, is the development of knowledge translation strategies to improve the screening and detection of lipid disorders in Canadian youth.
Assuntos
Cardiologia , Doenças Cardiovasculares , Dislipidemias , Inibidores de Hidroximetilglutaril-CoA Redutases , Hiperlipoproteinemia Tipo II , Canadá , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/prevenção & controle , Dislipidemias/diagnóstico , Dislipidemias/tratamento farmacológico , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Hiperlipoproteinemia Tipo II/tratamento farmacológicoRESUMO
OBJECTIVE: To assess stakeholder ratings of health indicators and subgroup analyses in systematic reviews used to update the Canadian Clinical Practice Guideline for Managing Paediatric Obesity. METHODS: Stakeholders (caregivers of children with obesity and Clinical Practice Guideline Steering Committee members) completed an online survey between April 2020 and March 2021. Participants rated importance of health indicators and subgroup analyses for behavioural and psychological, pharmacotherapeutic, and surgical interventions for managing paediatric obesity from not important to critically important using Grading, Recommendations, Assessment, Development and Evaluation criteria. RESULTS: No health indicators or subgroup analyses were rated not important by the 30 caregivers and 17 Steering Committee members. Across intervention types, stakeholders rated anxiety, depression, health-related quality of life, serious adverse events, plus age and weight status subgroups as critically important. CONCLUSION: Stakeholder ratings will inform data reporting and interpretation to update Canada's Clinical Practice Guideline for Managing Paediatric Obesity.
Assuntos
Obesidade Infantil , Canadá , Cuidadores , Criança , Humanos , Obesidade Infantil/prevenção & controle , Qualidade de Vida , Revisões Sistemáticas como AssuntoRESUMO
Transmembrane glycoprotein NMB (GPNMB) is a prognostic marker of poor outcome in patients with triple-negative breast cancer (TNBC). Glembatumumab Vedotin, an antibody drug conjugate targeting GPNMB, exhibits variable efficacy against GPNMB-positive metastatic TNBC as a single agent. We show that GPNMB levels increase in response to standard-of-care and experimental therapies for multiple breast cancer subtypes. While these therapeutic stressors induce GPNMB expression through differential engagement of the MiTF family of transcription factors, not all are capable of increasing GPNMB cell-surface localization required for Glembatumumab Vedotin inhibition. Using a FACS-based genetic screen, we discovered that suppression of heat shock protein 90 (HSP90) concomitantly increases GPNMB expression and cell-surface localization. Mechanistically, HSP90 inhibition resulted in lysosomal dispersion towards the cell periphery and fusion with the plasma membrane, which delivers GPNMB to the cell surface. Finally, treatment with HSP90 inhibitors sensitizes breast cancers to Glembatumumab Vedotin in vivo, suggesting that combination of HSP90 inhibitors and Glembatumumab Vedotin may be a viable treatment strategy for patients with metastatic TNBC.
Assuntos
Antineoplásicos , Imunoconjugados , Neoplasias de Mama Triplo Negativas , Anticorpos Monoclonais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Humanos , Imunoconjugados/efeitos adversos , Lisossomos/metabolismo , Glicoproteínas de Membrana/genética , Fatores de Transcrição , Neoplasias de Mama Triplo Negativas/tratamento farmacológicoRESUMO
Chemotherapy resistance is a critical barrier in cancer treatment. Metabolic adaptations have been shown to fuel therapy resistance; however, little is known regarding the generality of these changes and whether specific therapies elicit unique metabolic alterations. Using a combination of metabolomics, transcriptomics, and functional genomics, we show that two anthracyclines, doxorubicin and epirubicin, elicit distinct primary metabolic vulnerabilities in human breast cancer cells. Doxorubicin-resistant cells rely on glutamine to drive oxidative phosphorylation and de novo glutathione synthesis, while epirubicin-resistant cells display markedly increased bioenergetic capacity and mitochondrial ATP production. The dependence on these distinct metabolic adaptations is revealed by the increased sensitivity of doxorubicin-resistant cells and tumor xenografts to buthionine sulfoximine (BSO), a drug that interferes with glutathione synthesis, compared with epirubicin-resistant counterparts that are more sensitive to the biguanide phenformin. Overall, our work reveals that metabolic adaptations can vary with therapeutics and that these metabolic dependencies can be exploited as a targeted approach to treat chemotherapy-resistant breast cancer.
Assuntos
Antibióticos Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Epirubicina/farmacologia , Animais , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Feminino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCIDRESUMO
Bioenergetic perturbations driving neoplastic growth increase the production of reactive oxygen species (ROS), requiring a compensatory increase in ROS scavengers to limit oxidative stress. Intervention strategies that simultaneously induce energetic and oxidative stress therefore have therapeutic potential. Phenformin is a mitochondrial complex I inhibitor that induces bioenergetic stress. We now demonstrate that inflammatory mediators, including IFNγ and polyIC, potentiate the cytotoxicity of phenformin by inducing a parallel increase in oxidative stress through STAT1-dependent mechanisms. Indeed, STAT1 signaling downregulates NQO1, a key ROS scavenger, in many breast cancer models. Moreover, genetic ablation or pharmacological inhibition of NQO1 using ß-lapachone (an NQO1 bioactivatable drug) increases oxidative stress to selectively sensitize breast cancer models, including patient derived xenografts of HER2+ and triple negative disease, to the tumoricidal effects of phenformin. We provide evidence that therapies targeting ROS scavengers increase the anti-neoplastic efficacy of mitochondrial complex I inhibitors in breast cancer.