Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
ArXiv ; 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37396609

RESUMO

Two recent developments have accelerated progress in image reconstruction from human brain activity: large datasets that offer samples of brain activity in response to many thousands of natural scenes, and the open-sourcing of powerful stochastic image-generators that accept both low- and high-level guidance. Most work in this space has focused on obtaining point estimates of the target image, with the ultimate goal of approximating literal pixel-wise reconstructions of target images from the brain activity patterns they evoke. This emphasis belies the fact that there is always a family of images that are equally compatible with any evoked brain activity pattern, and the fact that many image-generators are inherently stochastic and do not by themselves offer a method for selecting the single best reconstruction from among the samples they generate. We introduce a novel reconstruction procedure (Second Sight) that iteratively refines an image distribution to explicitly maximize the alignment between the predictions of a voxel-wise encoding model and the brain activity patterns evoked by any target image. We use an ensemble of brain-optimized deep neural networks trained on the Natural Scenes Dataset (NSD) as our encoding model, and a latent diffusion model as our image generator. At each iteration, we generate a small library of images and select those that best approximate the measured brain activity when passed through our encoding model. We extract semantic and structural guidance from the selected images, used for generating the next library. We show that this process converges on a distribution of high-quality reconstructions by refining both semantic content and low-level image details across iterations. Images sampled from these converged image distributions are competitive with state-of-the-art reconstruction algorithms. Interestingly, the time-to-convergence varies systematically across visual cortex, with earlier visual areas generally taking longer and converging on narrower image distributions, relative to higher-level brain areas. Second Sight thus offers a succinct and novel method for exploring the diversity of representations across visual brain areas.

2.
Nat Commun ; 14(1): 3329, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37286563

RESUMO

Deep neural networks (DNNs) optimized for visual tasks learn representations that align layer depth with the hierarchy of visual areas in the primate brain. One interpretation of this finding is that hierarchical representations are necessary to accurately predict brain activity in the primate visual system. To test this interpretation, we optimized DNNs to directly predict brain activity measured with fMRI in human visual areas V1-V4. We trained a single-branch DNN to predict activity in all four visual areas jointly, and a multi-branch DNN to predict each visual area independently. Although it was possible for the multi-branch DNN to learn hierarchical representations, only the single-branch DNN did so. This result shows that hierarchical representations are not necessary to accurately predict human brain activity in V1-V4, and that DNNs that encode brain-like visual representations may differ widely in their architecture, ranging from strict serial hierarchies to multiple independent branches.


Assuntos
Encéfalo , Redes Neurais de Computação , Animais , Humanos , Encéfalo/diagnóstico por imagem , Aprendizagem , Imageamento por Ressonância Magnética , Primatas
3.
ArXiv ; 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37205268

RESUMO

Visual reconstruction algorithms are an interpretive tool that map brain activity to pixels. Past reconstruction algorithms employed brute-force search through a massive library to select candidate images that, when passed through an encoding model, accurately predict brain activity. Here, we use conditional generative diffusion models to extend and improve this search-based strategy. We decode a semantic descriptor from human brain activity (7T fMRI) in voxels across most of visual cortex, then use a diffusion model to sample a small library of images conditioned on this descriptor. We pass each sample through an encoding model, select the images that best predict brain activity, and then use these images to seed another library. We show that this process converges on high-quality reconstructions by refining low-level image details while preserving semantic content across iterations. Interestingly, the time-to-convergence differs systematically across visual cortex, suggesting a succinct new way to measure the diversity of representations across visual brain areas.

4.
ArXiv ; 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38168454

RESUMO

The release of large datasets and developments in AI have led to dramatic improvements in decoding methods that reconstruct seen images from human brain activity. We evaluate the prospect of further improving recent decoding methods by optimizing for consistency between reconstructions and brain activity during inference. We sample seed reconstructions from a base decoding method, then iteratively refine these reconstructions using a brain-optimized encoding model that maps images to brain activity. At each iteration, we sample a small library of images from an image distribution (a diffusion model) conditioned on a seed reconstruction from the previous iteration. We select those that best approximate the measured brain activity when passed through our encoding model, and use these images for structural guidance during the generation of the small library in the next iteration. We reduce the stochasticity of the image distribution at each iteration, and stop when a criterion on the "width" of the image distribution is met. We show that when this process is applied to recent decoding methods, it outperforms the base decoding method as measured by human raters, a variety of image feature metrics, and alignment to brain activity. These results demonstrate that reconstruction quality can be significantly improved by explicitly aligning decoding distributions to brain activity distributions, even when the seed reconstruction is output from a state-of-the-art decoding algorithm. Interestingly, the rate of refinement varies systematically across visual cortex, with earlier visual areas generally converging more slowly and preferring narrower image distributions, relative to higher-level brain areas. Brain-optimized inference thus offers a succinct and novel method for improving reconstructions and exploring the diversity of representations across visual brain areas.

5.
Neuroimage ; 247: 118812, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34936922

RESUMO

Functional MRI (fMRI) is a powerful technique that has allowed us to characterize visual cortex responses to stimuli, yet such experiments are by nature constructed based on a priori hypotheses, limited to the set of images presented to the individual while they are in the scanner, are subject to noise in the observed brain responses, and may vary widely across individuals. In this work, we propose a novel computational strategy, which we call NeuroGen, to overcome these limitations and develop a powerful tool for human vision neuroscience discovery. NeuroGen combines an fMRI-trained neural encoding model of human vision with a deep generative network to synthesize images predicted to achieve a target pattern of macro-scale brain activation. We demonstrate that the reduction of noise that the encoding model provides, coupled with the generative network's ability to produce images of high fidelity, results in a robust discovery architecture for visual neuroscience. By using only a small number of synthetic images created by NeuroGen, we demonstrate that we can detect and amplify differences in regional and individual human brain response patterns to visual stimuli. We then verify that these discoveries are reflected in the several thousand observed image responses measured with fMRI. We further demonstrate that NeuroGen can create synthetic images predicted to achieve regional response patterns not achievable by the best-matching natural images. The NeuroGen framework extends the utility of brain encoding models and opens up a new avenue for exploring, and possibly precisely controlling, the human visual system.


Assuntos
Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Córtex Visual/diagnóstico por imagem , Córtex Visual/fisiologia , Conjuntos de Dados como Assunto , Humanos , Aumento da Imagem/métodos
6.
Nat Neurosci ; 25(1): 116-126, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34916659

RESUMO

Extensive sampling of neural activity during rich cognitive phenomena is critical for robust understanding of brain function. Here we present the Natural Scenes Dataset (NSD), in which high-resolution functional magnetic resonance imaging responses to tens of thousands of richly annotated natural scenes were measured while participants performed a continuous recognition task. To optimize data quality, we developed and applied novel estimation and denoising techniques. Simple visual inspections of the NSD data reveal clear representational transformations along the ventral visual pathway. Further exemplifying the inferential power of the dataset, we used NSD to build and train deep neural network models that predict brain activity more accurately than state-of-the-art models from computer vision. NSD also includes substantial resting-state and diffusion data, enabling network neuroscience perspectives to constrain and enhance models of perception and memory. Given its unprecedented scale, quality and breadth, NSD opens new avenues of inquiry in cognitive neuroscience and artificial intelligence.


Assuntos
Neurociência Cognitiva , Imageamento por Ressonância Magnética , Inteligência Artificial , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Reconhecimento Psicológico
7.
Neuroimage ; 238: 118266, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34129949

RESUMO

Encoding models based on deep convolutional neural networks (DCNN) predict BOLD responses to natural scenes in the human visual system more accurately than many other currently available models. However, DCNN-based encoding models fail to predict a significant amount of variance in the activity of most voxels in all visual areas. This failure could reflect limitations in the data (e.g., a noise ceiling), or could reflect limitations of the DCNN as a model of computation in the brain. Understanding the source and structure of the unexplained variance could therefore provide helpful clues for improving models of brain computation. Here, we characterize the structure of the variance that DCNN-based encoding models cannot explain. Using a publicly available dataset of BOLD responses to natural scenes, we determined if the source of unexplained variance was shared across voxels, individual brains, retinotopic locations, and hierarchically distant visual brain areas. We answered these questions using voxel-to-voxel (vox2vox) models that predict activity in a target voxel given activity in a population of source voxels. We found that simple linear vox2vox models increased within-subject prediction accuracy over DCNN-based models for any pair of source/target visual areas, clearly demonstrating that the source of unexplained variance is widely shared within and across visual brain areas. However, vox2vox models were not more accurate than DCNN-based encoding models when source and target voxels came from different brains, demonstrating that the source of unexplained variance was not shared across brains. Importantly, control analyses demonstrated that the source of unexplained variance was not encoded in the mean activity of source voxels, or the activity of voxels in white matter. Interestingly, the weights of vox2vox models revealed preferential connection of target voxel activity to source voxels with adjacent receptive fields, even when source and target voxels were in different functional brain areas. Finally, we found that the prediction accuracy of the vox2vox models decayed with hierarchical distance between the source and target voxels but showed detailed patterns of dependence on hierarchical relationships that we did not observe in DCNNs. Given these results, we argue that the structured variance unexplained by DCNN-based encoding models is unlikely to be entirely caused by non-neural artifacts (e.g., spatially correlated measurement noise) or a failure of DCNNs to approximate the features encoded in brain activity; rather, our results point to a need for brain models that provide both mechanistic and computational explanations for structured ongoing activity in the brain. Keywords: fMRI, encoding models, deep neural networks, functional connectivity.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Modelos Neurológicos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética
8.
Curr Biol ; 30(12): 2211-2224.e6, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32359428

RESUMO

The relationship between mental imagery and vision is a long-standing problem in neuroscience. Currently, it is not known whether differences between the activity evoked during vision and reinstated during imagery reflect different codes for seen and mental images. To address this problem, we modeled mental imagery in the human brain as feedback in a hierarchical generative network. Such networks synthesize images by feeding abstract representations from higher to lower levels of the network hierarchy. When higher processing levels are less sensitive to stimulus variation than lower processing levels, as in the human brain, activity in low-level visual areas should encode variation in mental images with less precision than seen images. To test this prediction, we conducted an fMRI experiment in which subjects imagined and then viewed hundreds of spatially varying naturalistic stimuli. To analyze these data, we developed imagery-encoding models. These models accurately predicted brain responses to imagined stimuli and enabled accurate decoding of their position and content. They also allowed us to compare, for every voxel, tuning to seen and imagined spatial frequencies, as well as the location and size of receptive fields in visual and imagined space. We confirmed our prediction, showing that, in low-level visual areas, imagined spatial frequencies in individual voxels are reduced relative to seen spatial frequencies and that receptive fields in imagined space are larger than in visual space. These findings reveal distinct codes for seen and mental images and link mental imagery to the computational abilities of generative networks.


Assuntos
Retroalimentação Psicológica , Imaginação/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Modelos Psicológicos
9.
Neuroimage ; 180(Pt A): 188-202, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28645845

RESUMO

We introduce the feature-weighted receptive field (fwRF), an encoding model designed to balance expressiveness, interpretability and scalability. The fwRF is organized around the notion of a feature map-a transformation of visual stimuli into visual features that preserves the topology of visual space (but not necessarily the native resolution of the stimulus). The key assumption of the fwRF model is that activity in each voxel encodes variation in a spatially localized region across multiple feature maps. This region is fixed for all feature maps; however, the contribution of each feature map to voxel activity is weighted. Thus, the model has two separable sets of parameters: "where" parameters that characterize the location and extent of pooling over visual features, and "what" parameters that characterize tuning to visual features. The "where" parameters are analogous to classical receptive fields, while "what" parameters are analogous to classical tuning functions. By treating these as separable parameters, the fwRF model complexity is independent of the resolution of the underlying feature maps. This makes it possible to estimate models with thousands of high-resolution feature maps from relatively small amounts of data. Once a fwRF model has been estimated from data, spatial pooling and feature tuning can be read-off directly with no (or very little) additional post-processing or in-silico experimentation. We describe an optimization algorithm for estimating fwRF models from data acquired during standard visual neuroimaging experiments. We then demonstrate the model's application to two distinct sets of features: Gabor wavelets and features supplied by a deep convolutional neural network. We show that when Gabor feature maps are used, the fwRF model recovers receptive fields and spatial frequency tuning functions consistent with known organizational principles of the visual cortex. We also show that a fwRF model can be used to regress entire deep convolutional networks against brain activity. The ability to use whole networks in a single encoding model yields state-of-the-art prediction accuracy. Our results suggest a wide variety of uses for the feature-weighted receptive field model, from retinotopic mapping with natural scenes, to regressing the activities of whole deep neural networks onto measured brain activity.


Assuntos
Algoritmos , Mapeamento Encefálico/métodos , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Córtex Visual/fisiologia , Humanos , Imageamento por Ressonância Magnética/métodos
10.
Conf Proc IEEE Int Conf Syst Man Cybern ; 2018: 1054-1061, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37333993

RESUMO

We consider the inference problem of reconstructing a visual stimulus from brain activity measurements (e.g. fMRI) that encode this stimulus. Recovering a complete image is complicated by the fact that neural representations are noisy, high-dimensional, and contain incomplete information about image details. Thus, reconstructions of complex images from brain activity require a strong prior. Here we propose to train generative adversarial networks (GANs) to learn a generative model of images that is conditioned on measurements of brain activity. We consider two challenges of this approach: First, given that GANs require far more data to train than is typically collected in an fMRI experiment, how do we obtain enough samples to train a GAN that is conditioned on brain activity? Secondly, how do we ensure that our generated samples are robust against noise present in fMRI data? Our strategy to surmount both of these problems centers around the creation of surrogate brain activity samples that are generated by an encoding model. We find that the generative model thus trained generalizes to real fRMI data measured during perception of images and is able to reconstruct the basic outline of the stimuli.

11.
Artigo em Inglês | MEDLINE | ID: mdl-25871191

RESUMO

Spatiotemporal chaos in oscillatory and excitable media is often characterized by the presence of phase singularities called defects. Understanding such defect-mediated turbulence and its dependence on the dimensionality of a given system is an important challenge in nonlinear dynamics. This is especially true in the context of ventricular fibrillation in the heart, where the importance of the thickness of the ventricular wall is contentious. Here, we study defect-mediated turbulence arising in two different regimes in a conceptual model of excitable media and investigate how the statistical character of the turbulence changes if the thickness of the medium is changed from (quasi-) two- dimensional to three dimensional. We find that the thickness of the medium does not have a significant influence in, far from onset, fully developed turbulence while there is a clear transition if the system is close to a spiral instability. We provide clear evidence that the observed transition and change in the mechanism that drives the turbulent behavior is purely a consequence of the dimensionality of the medium. Using filament tracking, we further show that the statistical properties in the three-dimensional medium are different from those in turbulent regimes arising from filament instabilities like the negative line tension instability. Simulations also show that the presence of this unique three-dimensional turbulent dynamics is not model specific.

12.
Phys Rev Lett ; 111(13): 134101, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-24116782

RESUMO

We demonstrate for the first time that spiral wave chimeras-spiral waves with spatially extended unsynchronzied cores-can exist in complex oscillatory and even locally chaotic homogeneous systems under nonlocal coupling. Using ideas from phase synchronization, we show in particular that the unsynchronized cores exhibit a distribution of different frequencies, thus generalizing the main concept of chimera states beyond simple oscillatory systems. In contrast to simple oscillatory systems, we find that spiral wave chimeras in complex oscillatory and locally chaotic systems are characterized by the presence of synchronization defect lines (SDLs), along which the dynamics follows a periodic behavior different from that of the bulk. Whereas this is similar to the case of local coupling, the type of the prevailing SDLs is very different.

13.
J Chem Phys ; 133(4): 044909, 2010 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-20687688

RESUMO

Under a change of conditions, spiral waves in oscillatory reaction-diffusion media can become unstable and give rise to a multitude of emergent patterns. For example, in bounded domains spiral waves can undergo a resonant Hopf bifurcation leading to period-2 spirals which emit wave trains with doubled wavelength and temporal period and have a characteristic synchronization defect line. Here, we analyze the emergent patterns due to nonresonant Hopf bifurcations in the local dynamics giving rise to quasiperiodicity as reported in systems such as the peroxidase-oxidase and the Belousov-Zhabotinsky reaction. For a conceptual model of the peroxidase-oxidase reaction in a spatially extended medium, we find numerically that the additional frequency leads to defect-mediated turbulence. This proves that defect-mediated turbulence can indeed exist in media where the underlying local dynamics is quasiperiodic. While many statistical features of this turbulent dynamics are similar to those observed for other systems, we show that there are clear differences if higher-order statistics are considered. In particular, we find that the space-time dynamics of the topological defects as characterized by the statistics of defect loops is closely related to the underlying local dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA