Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Sci Rep ; 14(1): 12167, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806485

RESUMO

During neuroinflammation, monocytes that infiltrate the central nervous system (CNS) may contribute to regenerative processes depending on their activation status. However, the extent and mechanisms of monocyte-induced CNS repair in patients with neuroinflammatory diseases remain largely unknown, partly due to the lack of a fully human assay platform that can recapitulate monocyte-neural stem cell interactions within the CNS microenvironment. We therefore developed a human model system to assess the impact of monocytic factors on neural stem cells, establishing a high-content compatible assay for screening monocyte-induced neural stem cell proliferation and differentiation. The model combined monocytes isolated from healthy donors and human embryonic stem cell derived neural stem cells and integrated both cell-intrinsic and -extrinsic properties. We identified CNS-mimicking culture media options that induced a monocytic phenotype resembling CNS infiltrating monocytes, while allowing adequate monocyte survival. Monocyte-induced proliferation, gliogenic fate and neurogenic fate of neural stem cells were affected by the conditions of monocytic priming and basal neural stem cell culture as extrinsic factors as well as the neural stem cell passage number as an intrinsic neural stem cell property. We developed a high-content compatible human in vitro assay for the integrated analysis of monocyte-derived factors on CNS repair.


Assuntos
Diferenciação Celular , Proliferação de Células , Monócitos , Células-Tronco Neurais , Humanos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Monócitos/citologia , Monócitos/metabolismo , Monócitos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas
2.
Sci Rep ; 14(1): 9355, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654093

RESUMO

Thyroid hormones (TH) play critical roles during nervous system development and patients carrying coding variants of MCT8 (monocarboxylate transporter 8) or THRA (thyroid hormone receptor alpha) present a spectrum of neurological phenotypes resulting from perturbed local TH action during early brain development. Recently, human cerebral organoids (hCOs) emerged as powerful in vitro tools for disease modelling recapitulating key aspects of early human cortex development. To begin exploring prospects of this model for thyroid research, we performed a detailed characterization of the spatiotemporal expression of MCT8 and THRA in developing hCOs. Immunostaining showed MCT8 membrane expression in neuronal progenitor cell types including early neuroepithelial cells, radial glia cells (RGCs), intermediate progenitors and outer RGCs. In addition, we detected robust MCT8 protein expression in deep layer and upper layer neurons. Spatiotemporal SLC16A2 mRNA expression, detected by fluorescent in situ hybridization (FISH), was highly concordant with MCT8 protein expression across cortical cell layers. FISH detected THRA mRNA expression already in neuroepithelium before the onset of neurogenesis. THRA mRNA expression remained low in the ventricular zone, increased in the subventricular zone whereas strong THRA expression was observed in excitatory neurons. In combination with a robust up-regulation of known T3 response genes following T3 treatment, these observations show that hCOs provide a promising and experimentally tractable model to probe local TH action during human cortical neurogenesis and eventually to model the consequences of impaired TH function for early cortex development.


Assuntos
Córtex Cerebral , Transportadores de Ácidos Monocarboxílicos , Neurogênese , Organoides , RNA Mensageiro , Simportadores , Receptores alfa dos Hormônios Tireóideos , Feminino , Humanos , Gravidez , Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Neurogênese/genética , Neurônios/metabolismo , Organoides/metabolismo , Primeiro Trimestre da Gravidez/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Simportadores/genética , Simportadores/metabolismo , Receptores alfa dos Hormônios Tireóideos/genética , Receptores alfa dos Hormônios Tireóideos/metabolismo , Hormônios Tireóideos/metabolismo , Hormônios Tireóideos/genética
3.
Stem Cell Res ; 76: 103377, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460306

RESUMO

Bcl-2-associated X protein (BAX) and Blc-2 homologous antagonist killer 1 (BAK) are two pro-apoptotic members of BCL2 family. Here, two BAX/BAK double knock-out human induced pluripotent stem cell lines (iPSC) we generated using CRISPR-Cas9 to generate apoptosis incompetent cell lines. The resulting cell lines were karyotypically normal, had typical morphology and expressed typical markers for the undifferentiated state.


Assuntos
Células-Tronco Pluripotentes Induzidas , Proteínas Proto-Oncogênicas c-bcl-2 , Humanos , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Sistemas CRISPR-Cas/genética , Apoptose/genética
4.
Stem Cell Res ; 74: 103275, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38100912

RESUMO

THRB is a nuclear receptor, regulating gene expression dependent on thyroid hormone (TH) binding. The same receptor mediates signaling pathway activation in the cytosol. The challenge is to distinguish which of the two mechanisms is responsible for physiological effects of TH. We established an iPSC cell line with two mutations (E125G_G126S) in the THRB DNA-binding domain, which abrogates nuclear action and, thus, allows to study signaling pathway activation exclusively. We also generated a THRB knockout cell line to abolish all THRB effects. Comparison of WT and these two cell lines allows attribution of thyroid hormone effects to the underlying mechanism.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Hormônios Tireóideos , Transdução de Sinais , Mutação/genética , Linhagem Celular , Receptores beta dos Hormônios Tireóideos/genética , Receptores beta dos Hormônios Tireóideos/metabolismo
5.
Stem Cell Res ; 73: 103256, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38006677

RESUMO

The X-linked Allan-Herndon-Dudley syndrome (AHDS) is characterized by severely impaired psychomotor development and is caused by mutations in the SLC16A2 gene encoding the thyroid hormone transporter MCT8 (monocarboxylate transporter 8). By targeting exon 3 of SLC16A2 using CRISPR/Cas9 with single-stranded oligodeoxynucleotides as homology-directed repair templates, we introduced the AHDS patient missense variant G401R and a novel knock-out deletion variant (F400Sfs*17) into the male healthy donor hiPSC line BIHi001-B. We successfully generated cerebral organoids from these genome-edited lines, demonstrating the utility of the novel lines for modelling the effects of MCT8-deficency on human neurodevelopment.


Assuntos
Células-Tronco Pluripotentes Induzidas , Deficiência Intelectual Ligada ao Cromossomo X , Simportadores , Humanos , Masculino , Hormônios Tireóideos , Mutação , Transportadores de Ácidos Monocarboxílicos/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Simportadores/genética
6.
Stem Cell Res ; 73: 103253, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37984032

RESUMO

NCS1 (Neuronal calcium sensor protein 1) encodes a highly conserved calcium binding protein abundantly expressed in neurons. It modulates intracellular calcium homeostasis, calcium-dependent signaling pathways as well as neuronal transmission and plasticity. Here, we generated a NCS1 knockout human induced pluripotent stem cell (hiPSC) line using CRISPR-Cas9 genome editing. It shows regular expression of pluripotent markers, normal iPSC morphology and karyotype as well as no detectable off-target effects on top 6 potentially affected genes. This newly generated cell line constitutes a valuable tool for studying the role of NCS1 in the pathophysiology of various neuropsychiatric disorders and non-neurological disease.


Assuntos
Sistemas CRISPR-Cas , Células-Tronco Pluripotentes Induzidas , Humanos , Sistemas CRISPR-Cas/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Técnicas de Inativação de Genes , Cálcio/metabolismo , Edição de Genes
7.
STAR Protoc ; 4(3): 102406, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37481731

RESUMO

CRISPR-Cas9 technology coupled with human induced pluripotent stem cells allows precise disease modeling in pluripotent cells and subsequently derived specialized cell types. Here, we present an optimized CRISPR-Cas9 pipeline, ASSURED (affordable, successful, specific, user-friendly, rapid, efficient, and deliverable), to produce gene-modified single-cell-derived knockout or single-nucleotide-polymorphism-modified knockin hiPSCs clones. We describe steps for analyzing targeted genomic sequence and designing guide RNAs and homology repair template. We then detail the CRISPR-Cas9 delivery workflow, evaluation of editing efficiency, and automated cell isolation followed by clone screening.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , RNA Guia de Sistemas CRISPR-Cas , Técnicas de Inativação de Genes
8.
Sci Transl Med ; 15(705): eadg1659, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37467315

RESUMO

Increasing evidence points toward epigenetic variants as a risk factor for developing obesity. We analyzed DNA methylation of the POMC (pro-opiomelanocortin) gene, which is pivotal for satiety regulation. We identified sex-specific and nongenetically determined POMC hypermethylation associated with a 1.4-fold (confidence interval, 1.03 to 2.04) increased individual risk of developing obesity. To investigate the early embryonic establishment of POMC methylation states, we established a human embryonic stem cell (hESC) model. Here, hESCs (WA01) were transferred into a naïve state, which was associated with a reduction of DNA methylation. Naïve hESCs were differentiated via a formative state into POMC-expressing hypothalamic neurons, which was accompanied by re-establishment of DNA methylation patterning. We observed that reduced POMC gene expression was associated with increased POMC methylation in POMC-expressing neurons. On the basis of these findings, we treated POMC-hypermethylated obese individuals (n = 5) with an MC4R agonist and observed a body weight reduction of 4.66 ± 2.16% (means ± SD) over a mean treatment duration of 38.4 ± 26.0 weeks. In summary, we identified an epigenetic obesity risk variant at the POMC gene fulfilling the criteria for a metastable epiallele established in early embryonic development that may be addressable by MC4R agonist treatment to reduce body weight.


Assuntos
Obesidade , Pró-Opiomelanocortina , Masculino , Gravidez , Feminino , Humanos , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Obesidade/genética , Obesidade/metabolismo , Peso Corporal/fisiologia , Metilação de DNA/genética , Fatores de Risco , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo
9.
Commun Biol ; 5(1): 1246, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36380073

RESUMO

Stromal cells interact with immune cells during initiation and resolution of immune responses, though the precise underlying mechanisms remain to be resolved. Lessons learned from stromal cell-based therapies indicate that environmental signals instruct their immunomodulatory action contributing to immune response control. Here, to the best of our knowledge, we show a novel function for the guanine-exchange factor DOCK2 in regulating immunosuppressive function in three human stromal cell models and by siRNA-mediated DOCK2 knockdown. To identify immune function-related stromal cell molecular signatures, we first reprogrammed mesenchymal stem/progenitor cells (MSPCs) into induced pluripotent stem cells (iPSCs) before differentiating these iPSCs in a back-loop into MSPCs. The iPSCs and immature iPS-MSPCs lacked immunosuppressive potential. Successive maturation facilitated immunomodulation, while maintaining clonogenicity, comparable to their parental MSPCs. Sequential transcriptomics and methylomics displayed time-dependent immune-related gene expression trajectories, including DOCK2, eventually resembling parental MSPCs. Severe combined immunodeficiency (SCID) patient-derived fibroblasts harboring bi-allelic DOCK2 mutations showed significantly reduced immunomodulatory capacity compared to non-mutated fibroblasts. Conditional DOCK2 siRNA knockdown in iPS-MSPCs and fibroblasts also immediately reduced immunomodulatory capacity. Conclusively, CRISPR/Cas9-mediated DOCK2 knockout in iPS-MSPCs also resulted in significantly reduced immunomodulation, reduced CDC42 Rho family GTPase activation and blunted filopodia formation. These data identify G protein signaling as key element devising stromal cell immunomodulation.


Assuntos
Proteínas Ativadoras de GTPase , Guanina , Humanos , Proteínas Ativadoras de GTPase/genética , RNA Interferente Pequeno , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Imunidade , Imunomodulação
10.
J Allergy Clin Immunol ; 149(3): 1060-1068.e4, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34371081

RESUMO

BACKGROUND: Mast cells (MCs) are considered the main effectors in allergic reactions and well known for their contribution to the pathogenesis of various inflammatory diseases, urticaria, and mastocytosis. To study their functions in vitro, human primary MCs are isolated directly from several tissues or differentiated from hematopoietic progenitors. However, these techniques bear several disadvantages and challenges including low proliferation capacity, donor-dependent heterogeneity, and the lack of a continuous cell source. OBJECTIVE: To address this, we developed a novel strategy for the rapid and efficient differentiation of MCs from human-induced pluripotent stem cells (hiPSCs). METHODS: A 4-step protocol for the generation of hiPSC-derived MCs, based on the use of 3 hiPSC lines, was established and validated by comparison with human skin MCs and peripheral hematopoietic stem cell-derived MCs. RESULTS: hiPSC-MCs share phenotypic and functional characteristics of human skin MCs and peripheral hematopoietic stem cell-derived MCs. They display stable expression of the MC-associated receptors CD117, FcεRIα, and Mas-related G protein-coupled receptor X2 and degranulate in response to IgE/anti-IgE and substance P. CONCLUSIONS: This novel hiPSC-based approach provides a sustainable and homogeneous source for a rapid and highly productive generation of phenotypically mature, functional MCs, and its principle allows for the investigation of disease- and patient-specific MC populations.


Assuntos
Células-Tronco Pluripotentes Induzidas , Mastocitose , Urticária , Células-Tronco Hematopoéticas , Humanos , Mastócitos/metabolismo , Mastocitose/metabolismo , Urticária/metabolismo
11.
Data Brief ; 38: 107320, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34485650

RESUMO

Chemotherapy-induced peripheral neuropathy (CIPN) is a frequent and potentially irreversible adverse event of cytotoxic chemotherapy. We evaluate whether sensory neurons derived from induced pluripotent stem cells (iPSC-DSN) can serve as human disease model system for chemotherapy induced neurotoxicity. Sensory neurons differentiated from two established induced pluripotent stem cell lines were used (s.c. BIHi005-A https://hpscreg.eu/cell-line/BIHi005-A and BIHi004-B https://hpscreg.eu/cell-line/BIHi004-B, Berlin Institute of Health Stem Cell Core Facility). Cell viability and cytotoxicity assays were performed, comparing susceptibility to four neurotoxic and two non-neurotoxic drugs. RNA sequencing analyses in paclitaxel vs. vehicle (DMSO)-treated sensory neurons were performed. Treatment of iPSC-DSN for 24 h with the neurotoxic drugs paclitaxel, bortezomib, vincristine and cisplatin led to a dose dependent decline of cell viability in clinically relevant IC50 ranges, which was not the case for the non-neurotoxic compounds doxorubicin and 5-fluorouracil. RNA sequencing analyses at 24 h, i.e. before paclitaxel-induced cell death occurred, revealed the differential expression of genes of neuronal injury, cellular stress response, and sterol pathways in response to 1 µM paclitaxel. Neuroprotective effects of lithium chloride co-incubation, which were previously shown in rodent dorsal root ganglia, could be replicated in human iPSC-DSN. Cell lines from the two different donors BIHi005-A and BIHi004-B showed different responses to the neurotoxic treatment in cell viability and cytotoxicity assays.

12.
PLoS One ; 16(8): e0255976, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34411149

RESUMO

BACKGROUND: Cardiac injury associated with cytokine release frequently occurs in SARS-CoV-2 mediated coronavirus disease (COVID19) and mortality is particularly high in these patients. The mechanistic role of the COVID19 associated cytokine-storm for the concomitant cardiac dysfunction and associated arrhythmias is unclear. Moreover, the role of anti-inflammatory therapy to mitigate cardiac dysfunction remains elusive. AIMS AND METHODS: We investigated the effects of COVID19-associated inflammatory response on cardiac cellular function as well as its cardiac arrhythmogenic potential in rat and induced pluripotent stem cell derived cardiomyocytes (iPS-CM). In addition, we evaluated the therapeutic potential of the IL-1ß antagonist Canakinumab using state of the art in-vitro confocal and ratiometric high-throughput microscopy. RESULTS: Isolated rat ventricular cardiomyocytes were exposed to control or COVID19 serum from intensive care unit (ICU) patients with severe ARDS and impaired cardiac function (LVEF 41±5%; 1/3 of patients on veno-venous extracorporeal membrane oxygenation; CK 154±43 U/l). Rat cardiomyocytes showed an early increase of myofilament sensitivity, a decrease of Ca2+ transient amplitudes and altered baseline [Ca2+] upon exposure to patient serum. In addition, we used iPS-CM to explore the long-term effect of patient serum on cardiac electrical and mechanical function. In iPS-CM, spontaneous Ca2+ release events were more likely to occur upon incubation with COVID19 serum and nuclear as well as cytosolic Ca2+ release were altered. Co-incubation with Canakinumab had no effect on pro-arrhythmogenic Ca2+ release or Ca2+ signaling during excitation-contraction coupling, nor significantly influenced cellular automaticity. CONCLUSION: Serum derived from COVID19 patients exerts acute cardio-depressant and chronic pro-arrhythmogenic effects in rat and iPS-derived cardiomyocytes. Canakinumab had no beneficial effect on cellular Ca2+ signaling during excitation-contraction coupling. The presented method utilizing iPS-CM and in-vitro Ca2+ imaging might serve as a novel tool for precision medicine. It allows to investigate cytokine related cardiac dysfunction and pharmacological approaches useful therein.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Arritmias Cardíacas , Tratamento Farmacológico da COVID-19 , COVID-19 , Sinalização do Cálcio/efeitos dos fármacos , Miócitos Cardíacos , SARS-CoV-2/metabolismo , Adulto , Idoso , Animais , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patologia , COVID-19/complicações , COVID-19/metabolismo , COVID-19/patologia , Cálcio/metabolismo , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Masculino , Pessoa de Meia-Idade , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos , Ratos Sprague-Dawley , Disfunção Ventricular Esquerda/tratamento farmacológico , Disfunção Ventricular Esquerda/etiologia , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/patologia
13.
Theranostics ; 11(17): 8430-8447, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34373751

RESUMO

Self-assembly of solid organs from single cells would greatly expand applicability of regenerative medicine. Stem/progenitor cells can self-organize into micro-sized organ units, termed organoids, partially modelling tissue function and regeneration. Here we demonstrated 3D self-assembly of adult and induced pluripotent stem cell (iPSC)-derived fibroblasts, keratinocytes and endothelial progenitors into both, planar human skin in vivo and a novel type of spheroid-shaped skin organoids in vitro, under the aegis of human platelet lysate. Methods: Primary endothelial colony forming cells (ECFCs), skin fibroblasts (FBs) and keratinocytes (KCs) were isolated from human tissues and polyclonally propagated under 2D xeno-free conditions. Human tissue-derived iPSCs were differentiated into endothelial cells (hiPSC-ECs), fibroblasts (hiPSC-FBs) and keratinocytes (hiPSC-KCs) according to efficiency-optimized protocols. Cell identity and purity were confirmed by flow cytometry and clonogenicity indicated their stem/progenitor potential. Triple cell type floating spheroids formation was promoted by human platelet-derived growth factors containing culture conditions, using nanoparticle cell labelling for monitoring the organization process. Planar human skin regeneration was assessed in full-thickness wounds of immune-deficient mice upon transplantation of hiPSC-derived single cell suspensions. Results: Organoids displayed a distinct architecture with surface-anchored keratinocytes surrounding a stromal core, and specific signaling patterns in response to inflammatory stimuli. FGF-7 mRNA transfection was required to accelerate keratinocyte long-term fitness. Stratified human skin also self-assembled within two weeks after either adult- or iPSC-derived skin cell-suspension liquid-transplantation, healing deep wounds of mice. Transplant vascularization significantly accelerated in the presence of co-transplanted endothelial progenitors. Mechanistically, extracellular vesicles mediated the multifactorial platelet-derived trophic effects. No tumorigenesis occurred upon xenografting. Conclusion: This illustrates the superordinate progenitor self-organization principle and permits novel rapid 3D skin-related pharmaceutical high-content testing opportunities with floating spheroid skin organoids. Multi-cell transplant self-organization facilitates development of iPSC-based organ regeneration strategies using cell suspension transplantation supported by human platelet factors.


Assuntos
Técnicas de Cultura de Células/métodos , Organoides/metabolismo , Fenômenos Fisiológicos da Pele/genética , Células-Tronco/metabolismo , Adulto , Animais , Diferenciação Celular/fisiologia , Células Endoteliais/citologia , Células Progenitoras Endoteliais/citologia , Células Progenitoras Endoteliais/fisiologia , Feminino , Fibroblastos/citologia , Fibroblastos/fisiologia , Voluntários Saudáveis , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Queratinócitos/citologia , Queratinócitos/fisiologia , Masculino , Camundongos Endogâmicos NOD , Pessoa de Meia-Idade , Organoides/citologia , Regeneração/fisiologia , Medicina Regenerativa , Pele/metabolismo , Transfecção
14.
Stem Cell Res ; 54: 102417, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34119956

RESUMO

MIRAGE syndrome is a multisystem disorder caused by mutations in SAMD9 (sterile α motif domain-containing protein 9) with a high mortality in the first decade of life. We generated 2 human induced pluripotent stem cell lines from male children diagnosed with MIRAGE syndrome. The cell lines were generated from fibroblasts by integration-free reprogramming using the Sendai virus. Both cell lines were fully characterized regarding their pluripotent identity and differentiation potential, and quality controlled for karyotypic integrity, cell line identity and clearance of reprogramming vectors. The generated cell lines represent a valuable tool to study the disease mechanism of MIRAGE syndrome.


Assuntos
Células-Tronco Pluripotentes Induzidas , Diferenciação Celular , Linhagem Celular , Reprogramação Celular , Criança , Fibroblastos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Vírus Sendai/genética
15.
Stem Cell Res ; 54: 102406, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34062331

RESUMO

Focal segmental glomerulosclerosis (FSGS) is a major cause of familial nephrotic syndrome. We generated 20 induced pluripotent stem cell lines from patients diagnosed with FSGS. The iPSC lines include 8 female and 12 male lines and cover a donor age range from 31 to 78. The lines were generated from peripheral blood mononuclear cells by integration-free reprogramming using Sendai virus vectors. Cell lines were fully characterized regarding their pluripotency and differentiation potential, and quality controlled for karyotypic integrity, identity and clearance of reprogramming vectors. The generated cell lines represent a valuable tool for disease modelling and drug development for FSGS.


Assuntos
Glomerulosclerose Segmentar e Focal , Células-Tronco Pluripotentes Induzidas , Linhagem Celular , Feminino , Glomerulosclerose Segmentar e Focal/genética , Humanos , Leucócitos Mononucleares , Masculino , Vírus Sendai/genética
16.
Neurobiol Dis ; 155: 105391, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33984509

RESUMO

Chemotherapy-induced peripheral neuropathy (CIPN) is a frequent, potentially irreversible adverse effect of cytotoxic chemotherapy often leading to a reduction or discontinuation of treatment which negatively impacts patients' prognosis. To date, however, neither predictive biomarkers nor preventive treatments for CIPN are available, which is partially due to a lack of suitable experimental models. We therefore aimed to evaluate whether sensory neurons derived from induced pluripotent stem cells (iPSC-DSN) can serve as human disease model system for CIPN. Treatment of iPSC-DSN for 24 h with the neurotoxic drugs paclitaxel, bortezomib, vincristine and cisplatin led to axonal blebbing and a dose dependent decline of cell viability in clinically relevant IC50 ranges, which was not observed for the non-neurotoxic compounds doxorubicin and 5-fluorouracil. Paclitaxel treatment effects were less pronounced after 24 h but prominent when treatment was applied for 72 h. Global transcriptome analyses performed at 24 h, i.e. before paclitaxel-induced cell death occurred, revealed the differential expression of genes of neuronal injury, cellular stress response, and sterol pathways. We further evaluated if known neuroprotective strategies can be reproduced in iPSC-DSN and observed protective effects of lithium replicating findings from rodent dorsal root ganglia cells. Comparing sensory neurons derived from two different healthy donors, we found preliminary evidence that these cell lines react differentially to neurotoxic drugs as expected from the variable presentation of CIPN in patients. In conclusion, iPSC-DSN are a promising platform to study the pathogenesis of CIPN and to evaluate neuroprotective treatment strategies. In the future, the application of patient-specific iPSC-DSN could open new avenues for personalized medicine with individual risk prediction, choice of chemotherapeutic compounds and preventive treatments.


Assuntos
Antineoplásicos/toxicidade , Axônios/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células Receptoras Sensoriais/efeitos dos fármacos , Axônios/patologia , Linhagem Celular , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Células Receptoras Sensoriais/patologia , Imagem com Lapso de Tempo/métodos
17.
J Bone Miner Res ; 36(8): 1621-1635, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33905594

RESUMO

Human induced pluripotent stem cells (hiPSCs) hold great potential for modeling human diseases and the development of innovative therapeutic approaches. Here, we report on a novel, simplified differentiation method for forming functional osteoclasts from hiPSCs. The three-step protocol starts with embryoid body formation, followed by hematopoietic specification, and finally osteoclast differentiation. We observed continuous production of monocyte-like cells over a period of up to 9 weeks, generating sufficient material for several osteoclast differentiations. The analysis of stage-specific gene and surface marker expression proved mesodermal priming, the presence of monocyte-like cells, and of terminally differentiated multinucleated osteoclasts, able to form resorption pits and trenches on bone and dentine in vitro. In comparison to peripheral blood mononuclear cell (PBMC)-derived osteoclasts hiPSC-derived osteoclasts were larger and contained a higher number of nuclei. Detailed functional studies on the resorption behavior of hiPSC-osteoclasts indicated a trend towards forming more trenches than pits and an increase in pseudoresorption. We used hiPSCs from an autosomal recessive osteopetrosis (ARO) patient (BIHi002-A, ARO hiPSCs) with compound heterozygous missense mutations p.(G292E) and p.(R403Q) in CLCN7, coding for the Cl- /H+ -exchanger ClC-7, for functional investigations. The patient's leading clinical feature was a brain malformation due to defective neuronal migration. Mutant ClC-7 displayed residual expression and retained lysosomal co-localization with OSTM1, the gene coding for the osteopetrosis-associated transmembrane protein 1, but only ClC-7 harboring the mutation p.(R403Q) gave strongly reduced ion currents. An increased autophagic flux in spite of unchanged lysosomal pH was evident in undifferentiated ARO hiPSCs. ARO hiPSC-derived osteoclasts showed an increased size compared to hiPSCs of healthy donors. They were not able to resorb bone, underlining a loss-of-function effect of the mutations. In summary, we developed a highly reproducible, straightforward hiPSC-osteoclast differentiation protocol. We demonstrated that osteoclasts differentiated from ARO hiPSCs can be used as a disease model for ARO and potentially also other osteoclast-related diseases. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Assuntos
Células-Tronco Pluripotentes Induzidas , Osteopetrose , Canais de Cloreto/genética , Humanos , Leucócitos Mononucleares , Mutação , Osteoclastos , Osteopetrose/genética
18.
Bioinformatics ; 37(18): 3088-3090, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-33693580

RESUMO

SUMMARY: Here, we propose Fourier ring correlation-based quality estimation (FRC-QE) as a new metric for automated image quality estimation in 3D fluorescence microscopy acquisitions of cleared organoids that yields comparable measurements across experimental replicates, clearing protocols and works for different microscopy modalities. AVAILABILITY AND IMPLEMENTATION: FRC-QE is written in ImgLib2/Java and provided as an easy-to-use and macro-scriptable plugin for Fiji. Code, documentation, sample images and further information can be found under https://github.com/PreibischLab/FRC-QE. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Imageamento Tridimensional , Software , Microscopia de Fluorescência
19.
Stem Cell Rev Rep ; 17(3): 1039-1052, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33410098

RESUMO

Balanced signal transduction is crucial in tissue patterning, particularly in the vasculature. Heterotopic ossification (HO) is tightly linked to vascularization with increased vessel number in hereditary forms of HO, such as Fibrodysplasia ossificans progressiva (FOP). FOP is caused by mutations in the BMP type I receptor ACVR1 leading to aberrant SMAD1/5 signaling in response to ActivinA. Whether observed vascular phenotype in human FOP lesions is connected to aberrant ActivinA signaling is unknown. Blocking of ActivinA prevents HO in FOP mice indicating a central role of the ligand in FOP. Here, we established a new FOP endothelial cell model generated from induced pluripotent stem cells (iECs) to study ActivinA signaling. FOP iECs recapitulate pathogenic ActivinA/SMAD1/5 signaling. Whole transcriptome analysis identified ActivinA mediated activation of the BMP/NOTCH pathway exclusively in FOP iECs, which was rescued to WT transcriptional levels by the drug candidate Saracatinib. We propose that ActivinA causes transcriptional pre-patterning of the FOP endothelium, which might contribute to differential vascularity in FOP lesions compared to non-hereditary HO.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miosite Ossificante , Animais , Benzodioxóis , Camundongos , Miosite Ossificante/tratamento farmacológico , Miosite Ossificante/genética , Quinazolinas , Transdução de Sinais , Proteína Smad1/genética , Proteína Smad5
20.
Curr Protoc Stem Cell Biol ; 55(1): e123, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32956572

RESUMO

Advances in human pluripotent stem cell (hPSC) techniques have led them to become a widely used and powerful tool for a vast array of applications, including disease modeling, developmental studies, drug discovery and testing, and emerging cell-based therapies. hPSC workflows that require clonal expansion from single cells, such as CRISPR/Cas9-mediated genome editing, face major challenges in terms of efficiency, cost, and precision. Classical sub-cloning approaches depend on limiting dilution and manual colony picking, which are both time-consuming and labor-intensive, and lack a real proof of clonality. Here we describe the application of three different automated cell isolation and dispensing devices that can enhance the single-cell cloning process for hPSCs. In combination with optimized cell culture conditions, these devices offer an attractive alternative compared to manual methods. We explore various aspects of each device system and define protocols for their practical application. Following the workflow described here, single cell-derived hPSC sub-clones from each system maintain pluripotency and genetic stability. Furthermore, the workflows can be applied to uncover karyotypic mosaicism prevalent in bulk hPSC cultures. Our robust automated workflow facilitates high-throughput hPSC clonal selection and expansion, urgently needed in the operational pipelines of hPSC applications. © 2020 The Authors. Basic Protocol: Efficient automated hPSC single cell seeding and clonal expansion using the iotaSciences IsoCell platform Alternate Protocol 1: hPSC single cell seeding and clonal expansion using the Cellenion CellenONE single-cell dispenser Alternate Protocol 2: hPSC single cell seeding and clonal expansion using the Cytena single-cell dispenser Support Protocol 1: Coating cell culture plates with Geltrex Support Protocol 2: hPSC maintenance in defined feeder-free conditions Support Protocol 3: hPSC passaging in clumps Support Protocol 4: Laminin 521 coating of IsoCell plates and 96-well/384-well plates Support Protocol 5: Preparation of medium containing anti-apoptotic small molecules Support Protocol 6: 96- and 384-well target plate preparation prior to single cell seeding Support Protocol 7: Single cell dissociation of hPSCs Support Protocol 8: IsoCell-, CellenONE-, and Cytena-derived hPSC clone subculture and expansion.


Assuntos
Separação Celular/métodos , Clonagem Molecular/métodos , Células-Tronco Pluripotentes/citologia , Análise de Célula Única/métodos , Automação Laboratorial , Técnicas de Cultura de Células , Células Clonais , Edição de Genes , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA