RESUMO
Thin-film organic photovoltaic (OPV) devices represent an attractive alternative to conventional silicon solar cells due to their lightweight, flexibility, and low cost. However, the relatively low optical absorption of the OPV active layers still represents an open issue in view of efficient devices that cannot be addressed by adopting conventional light coupling strategies derived from thick PV absorbers. The light coupling to thin-film solar cells can be boosted by nanostructuring the device interfaces at the subwavelength scale. Here, we demonstrate broadband and omnidirectional photon harvesting in thin-film OPV devices enabled by highly ordered one-dimensional (1D) arrays of nanogrooves. Laser interference lithography, in combination with reactive ion etching (RIE), provides the controlled tailoring of the height and periodicity of the silica grooves, enabling effective tuning of the anti-reflection properties in the active organic layer (PTB7:PCBM). With this strategy, we demonstrate a strong enhancement of the optical absorption, as high as 19% with respect to a flat device, over a broadband visible and near-infrared spectrum. The OPV device supported on these optimized nanogrooved substrates yields a 14% increase in short-circuit current over the corresponding flat device, highlighting the potential of this large-scale light-harvesting strategy in the broader context of thin-film technologies.
RESUMO
Currently, energy-efficient electrocatalytic oxygen evolution from water involves the use of noble metal oxides. Here, we show that highly p-conducting zinc cobaltite spinel Zn1.2Co1.8O3.5 offers an enhanced electrocatalytic activity for oxygen evolution. We refer to previous studies on sputtered Zn-Co spinels with optimized conductivity for implementation as (p-type) transparent conducting oxides. Based on that, we manufacture off-stoichiometric conducting p-spinel catalytic anodes on tetragonal Ti, Au-Ti and hexagonal Al-doped ZnO carriers and report the evolution of O2 at Tafel slopes between 40.5 and 48 mV dec-1 and at overpotentials between 0.35 and 0.43 V (at 10 mA cm-2). The anodic stability, i.e., 50 h of continuous O2 electrolysis in 1 M KOH, suggests that increasing the conductivity is advantageous for electrolysis, particularly for reducing the ohmic losses and ensuring activity across the entire surface. We conclude by pointing out the merits of improving p-doping in Zn-Co spinels by optimized growth on a tetragonal Ti-carrier and their application as dimension-stable 3d-metal anodes.
RESUMO
Photoswitchable organic field-effect transistors (OFETs) with embedded photochromic materials are considered as a promising platform for development of organic optical memory devices. Unfortunately, the operational mechanism of these devices and guidelines for selection of light-sensitive materials are still poorly explored. In the present work, a series of photochromic dihetarylethenes with a cyclopentenone bridge moiety were investigated as a dielectric/semiconductor interlayer in the structure of photoswitchable OFETs. It was shown that the electrical performance and stability of the devices can be tuned by variation of the substituents in the structure of the photochromic material. In particular, it was found that dihetarylethenes with donor substituents demonstrated the best light-induced switching effects (wider memory windows and higher switching coefficients) in the devices. The operation mechanism of the light-triggered memory devices was proposed based on the differential in situ Fourier transform infrared (FTIR) spectroscopy data and regression analysis of the threshold voltage-programming time experimental dependencies. The established relationships will facilitate further rational design of new photochromic materials, thus paving a way to fast and durable organic optical memories and memory transistors (memristors).
RESUMO
The most active and efficient catalysts for the electrochemical hydrogen evolution reaction (HER) rely on platinum, a fact that increases the cost of producing hydrogen and thereby limits the widespread adoption of this fuel. Here, a metal-free organic electrocatalyst that mimics the platinum surface by implementing a high work function and incorporating hydrogen-affine hydrogen bonds is introduced. These motifs, inspired from enzymology, are deployed here as selective reaction centres. It is shown that the keto-amine hydrogen-bond motif enhances the rate-determining step in proton reduction to molecular hydrogen. The keto-amine-functionalized polymers reported herein evolve hydrogen at an overpotential of 190 mV. They share certain key properties with platinum: a similar work function and excellent electrochemical stability and chemical robustness. These properties allow the demonstration of one week of continuous HER operation without notable degradation nor delamination from the carrier electrode. Scaled continuous-flow electrolysis is reported and 1 L net molecular hydrogen is produced within less than 9 h using 2.3 mg of polymer electrocatalyst.
RESUMO
Electrochemical conversion of CO2 to alcohols is one of the most challenging methods of conversion and storage of electrical energy in the form of high-energy fuels. The challenge lies in the catalyst design to enable its real-life implementation. Herein, we demonstrate the synthesis and characterization of a cobalt(III) triphenylphosphine corrole complex, which contains three polyethylene glycol residues attached at the meso-phenyl groups. Electron-donation and therefore reduction of the cobalt from cobalt(III) to cobalt(I) is accompanied by removal of the axial ligand, thus resulting in a square-planar cobalt(I) complex. The cobalt(I) as an electron-rich supernucleophilic d8-configurated metal centre, where two electrons occupy and fill up the antibonding dz2 orbital. This orbital possesses high affinity towards electrophiles, allowing for such electronically configurated metals reactions with carbon dioxide. Herein, we report the potential dependent heterogeneous electroreduction of CO2 to ethanol or methanol of an immobilized cobalt A3-corrole catalyst system. In moderately acidic aqueous medium (pH = 6.0), the cobalt corrole modified carbon paper electrode exhibits a Faradaic Efficiency (FE%) of 48 % towards ethanol production.
RESUMO
Hybrid thin films of crystalline CuSCN and 4-(N,N-dimethylamino)-4'-(N'-methyl)stilbazolium (DAS) in three distinctively different nanostructures were obtained by electrochemical self-assembly from a single pot containing all the chemical ingredients. Their optical properties for UV-vis-NIR absorption, photoluminescence (PL), and PL excitation spectra were examined between 77 and 298 K, in comparison with solution and solid powder of DAS tosylate (DAST). Unlike all other dyes we tested before, PL of DAS was not quenched but rather enhanced when hybridized with CuSCN. DAST exhibited a strong exciton-phonon coupling to weaken, broaden, and red shift PL at room temperature, so that it inversely is strongly enhanced, sharpened, and blue-shifted at 77 K. The PL of the same dye in the hybrid thin film, however, shows a slight red shift and only a moderate enhancement at reduced temperatures due to strong exciton stabilization in dielectric environment of CuSCN and concerted PL by energy transfer from CuSCN to DAS luminophore, making it a unique nearly temperature-independent luminescent material.
RESUMO
ABSTRACT: Stable radicals in organic conjugated molecules are of great interest due to their magnetic signals and broad optical absorptions. In this paper, we report on naphthalene, benzoperylene, perylene, terrylene, and quaterrylene carboximides, reduced under controlled conditions, where stable metal-free solid salts of radical anions could be obtained forming darkly colored solutions with line-rich UV/Vis/NIR spectra and exhibiting special magnetic properties. The most bathochromic shift of the absorption maxima extend from 760 until 1700 nm. Persistent paramagnetic properties of the solids were observed and temperature-dependent susceptibilities are measured.
RESUMO
Alpine karst aquifers are important groundwater resources for the provision of drinking water all around the world. Yet, due to difficult accessibility and long-standing methodological limitations, the microbiology of these systems has long been understudied. The aim of the present study was to investigate the structure and dynamics of bacterial communities in spring water of an alpine limestone karst aquifer (LKAS2) under different hydrological conditions (base vs. event flow). The study was based on high-throughput 16S rRNA gene amplicon sequencing, study design and sample selection were guided by hydrology and pollution microbiology data. Spanning more than 27 months, our analyses revealed a taxonomically highly stable bacterial community, comprising high proportions of yet uncultivated bacteria in the suspended bacterial community fraction. Only the three candidate phyla Parcubacteria (OD1), Gracilibacteria (GN02), Doudnabacteria (SM2F11) together with Proteobacteria and Bacteroidetes contributed between 70.0 and 88.4% of total reads throughout the investigation period. A core-community of 300 OTUs consistently contributed between 37.6 and 56.3% of total reads, further supporting the hypothesis of a high temporal stability in the bacterial community in the spring water. Nonetheless, a detectable response in the bacterial community structure of the spring water was discernible during a high-discharge event. Sequence reads affiliated to the class Flavobacteriia clearly increased from a mean proportion of 2.3% during baseflow to a maximum of 12.7% during the early phase of the studied high-discharge event, suggesting direct impacts from changing hydrological conditions on the bacterial community structure in the spring water. This was further supported by an increase in species richness (Chao1) at higher discharge. The combination of these observations allowed the identification and characterization of three different discharge classes (Q1-Q3). In conclusion, we found a taxonomically stable bacterial community prevailing in spring waters from an alpine karst aquifer over the entire study period of more than 2 years. Clear response to changing discharge conditions could be detected for particular bacterial groups, whereas the most responsive group - bacteria affiliated to the class of Flavobacteriia - might harbor potential as a valuable natural indicator of "system disturbances" in karst aquifers.
RESUMO
Charge-transfer complex crystals have been extensively studied because of their metallic conductivity, photoconductivity, ambipolar charge transport, and high career mobility. Numerous studies of their applications for organic electric devices such as organic field effect transistors and solar cells have reported. However, bulky single crystals of charge-transfer complexes are difficult to handle, specifically to be made into a form of a thin film. Recently, nano/micro crystallization of charge-transfer crystal is attracted to realize thin film applications. In this paper, charge transfer complex nanorods composed of dibenzotetrathiafulvalene-tetracyanoquinodimethane (DBTTF-TCNQ) were prepared by the reprecipitation method. The as-formed nanorods possess a kinetically metastable crystal structure different from the thermodynamically stable bulk crystal prepared by slow evaporation of the solvent. From photoconductive measurement, nanorod stacks show a significant photosensitivity (354.57 µA/W) on par with bulk crystal (417.14 µA/W). These results suggest dibenzotetrathiafulvalene-tetracyanoquinodimethane (DBTTF-TCNQ) nanorods have a favorable crystal structure for carrier transport due to the difference of molecular stacking assembly.
RESUMO
Understanding the fate of fecal pollution in the landscape is required for microbial risk analysis. The aim of this study was to assess the patterns and dynamics of beta-d-glucuronidase (GLUC), which has been suggested as a surrogate for fecal pollution monitoring, in a stream draining an agricultural headwater catchment. Automated enzymatic on-site measurements of stream water and sediments were made over two years (2014-2016) to quantify the sources and pathways of GLUC in a stream. The event water fraction of streamflow was estimated by stable isotopes. Samples from field sediments on a hillslope, streambed sediment and stream water were analyzed for GLUC and with a standard E. coli assay. The results showed ten times higher GLUC and E. coli concentrations during the summer than during the winter for all compartments (field and streambed sediments and stream water). The E. coli concentrations in the streambed sediment were approximately 100 times those of the field sediments. Of the total GLUC load in the study period, 39% were transported during hydrological events (increased streamflow due to rainfall or snowmelt); of these, 44% were transported when the stream contained no recent rainwater. The results suggested that a large proportion of the GLUC and E. coli in the stream water stemmed from resuspended streambed sediments. Moreover, the results strongly indicated the existence of remnant populations of GLUC-active organisms in the catchment.
Assuntos
Proteínas de Bactérias/análise , Monitoramento Ambiental/métodos , Proteínas de Escherichia coli/análise , Escherichia coli/isolamento & purificação , Glucuronidase/análise , Sistemas On-Line , Áustria , Monitoramento Ambiental/instrumentação , Fezes/microbiologia , Isótopos/análise , Rios/química , Estações do Ano , Microbiologia da Água , Qualidade da ÁguaRESUMO
This study used automated enzymatic activity measurements conducted from a mobile research vessel to detect the spatial variability of betadglucuronidase (GLUC) activity in large freshwater bodies. The ship-borne observations provided the first high-resolution spatial data of GLUC activity in large water bodies as rapid indication of fecal pollution and were used to identify associations with hydrological conditions and land use. The utility of this novel approach for water quality screening was evaluated by surveys of the Columbia River, the Mississippi River and the Yahara Lakes, covering up to a 500â¯km river course and 50â¯km2 lake area. The ship-borne measurements of GLUC activity correlated with standard E. coli analyses (R2â¯=â¯0.71) and revealed the effects of (1) precipitation events and urban run-off on GLUC activity in surface waters, (2) localized point inlets of potential fecal pollution and (3) increasing GLUC signals along gradients of urbanization. We propose that this ship-borne water quality screening to be integrated into future water inventory programs as an initial or complementary tool (besides established fecal indicator parameters), due to its ability to provide near real-time spatial information on potential fecal contamination of large surface water resources and therefore being helpful to greatly reduce potential human health risks.
Assuntos
Monitoramento Ambiental/métodos , Glucuronidase/análise , Lagos/microbiologia , Rios/microbiologia , Qualidade da Água , Monitoramento Ambiental/instrumentação , Estados UnidosRESUMO
Over the past 15 years, pioneering interdisciplinary research has been performed on the microbiology of hydrogeologically well-defined alpine karst springs located in the Northern Calcareous Alps (NCA) of Austria. This article gives an overview on these activities and links them to other relevant research. Results from the NCA springs and comparable sites revealed that spring water harbors abundant natural microbial communities even in aquifers with high water residence times and the absence of immediate surface influence. Apparently, hydrogeology has a strong impact on the concentration and size of the observed microbes, and total cell counts (TCC) were suggested as a useful means for spring type classification. Measurement of microbial activities at the NCA springs revealed extremely low microbial growth rates in the base flow component of the studied spring waters and indicated the importance of biofilm-associated microbial activities in sediments and on rock surfaces. Based on genetic analysis, the autochthonous microbial endokarst community (AMEC) versus transient microbial endokarst community (TMEC) concept was proposed for the NCA springs, and further details within this overview article are given to prompt its future evaluation. In this regard, it is well known that during high-discharge situations, surface-associated microbes and nutrients such as from soil habitats or human settlements-potentially containing fecal-associated pathogens as the most critical water-quality hazard-may be rapidly flushed into vulnerable karst aquifers. In this context, a framework for the comprehensive analysis of microbial pollution has been proposed for the NCA springs to support the sustainable management of drinking water safety in accordance with recent World Health Organization guidelines. Near-real-time online water quality monitoring, microbial source tracking (MST) and MST-guided quantitative microbial-risk assessment (QMRA) are examples of the proposed analytical tools. In this context, this overview article also provides a short introduction to recently emerging methodologies in microbiological diagnostics to support reading for the practitioner. Finally, the article highlights future research and development needs. This article is categorized under: 1Engineering Water > Water, Health, and Sanitation2Science of Water > Water Extremes3Water and Life > Nature of Freshwater Ecosystems.
RESUMO
Selective electrocatalysts are urgently needed for carbon dioxide (CO2) reduction to replace fossil fuels with renewable fuels, thereby closing the carbon cycle. To date, noble metals have achieved the best performance in energy yield and faradaic efficiency and have recently reached impressive electrical-to-chemical power conversion efficiencies. However, the scarcity of precious metals makes the search for scalable, metal-free, CO2 reduction reaction (CO2RR) catalysts all the more important. We report an all-organic, that is, metal-free, electrocatalyst that achieves impressive performance comparable to that of best-in-class Ag electrocatalysts. We hypothesized that polydopamine-a conjugated polymer whose structure incorporates hydrogen-bonded motifs found in enzymes-could offer the combination of efficient electrical conduction, together with rendered active catalytic sites, and potentially thereby enable CO2RR. Only by developing a vapor-phase polymerization of polydopamine were we able to combine the needed excellent conductivity with thin film-based processing. We achieve catalytic performance with geometric current densities of 18 mA cm-2 at 0.21 V overpotential (-0.86 V versus normal hydrogen electrode) for the electrosynthesis of C1 species (carbon monoxide and formate) with continuous 16-hour operation at >80% faradaic efficiency. Our catalyst exhibits lower overpotentials than state-of-the-art formate-selective metal electrocatalysts (for example, 0.5 V for Ag at 18 mA cm-1). The results confirm the value of exploiting hydrogen-bonded sequences as effective catalytic centers for renewable and cost-efficient industrial CO2RR applications.
RESUMO
Application of pseudohalogens in colloidal quantum dot (CQD) solar-cell active layers increases the solar-cell performance by reducing the trap densities and implementing thick CQD films. Pseudohalogens are polyatomic analogs of halogens, whose chemistry allows them to substitute halogen atoms by strong chemical interactions with the CQD surfaces. The pseudohalide thiocyanate anion is used to achieve a hybrid surface passivation. A fourfold reduced trap state density than in a control is observed by using a suite of field-effect transistor studies. This translates directly into the thickest CQD active layer ever reported, enabled by enhanced transport lengths in this new class of materials, and leads to the highest external quantum efficiency, 80% at the excitonic peak, compared with previous reports of CQD solar cells.
RESUMO
A fully automated on-site device (SAMP-FIL) that enables water sampling with simultaneous filtration and effective cleaning procedures of the device's components was developed and field-tested. The SAMP-FIL was custom-built using commercially available components and was controlled by a RaspberryPi single-board computer operating open-source software. SAMP-FIL was designed for sample pre-treatment with minimal sample alteration to meet the requirements of on-site measurement devices that cannot handle coarse suspended solids within the measurement procedure or cycle. A highly effective cleaning procedure provides a fresh and minimally altered sample for the connected measurement device. The construction and programmed software facilitates the use of SAMP-FIL for different connected measurement devices. The SAMP-FIL sample pretreatment was tested for over one year for rapid and on-site enzymatic activity (beta-d-glucuronidase, GLUC) determination (BACTcontrol) in sediment-laden stream water. The formerly used proprietary sampling set-up was assumed to lead to significant damping of the measurement signal due to its susceptibility to clogging, debris accumulation and bio-film accumulation. The implementation of SAMP-FIL considerably increased the error-free running time and measurement accuracy of BACTcontrol devices. This paper describes how low-cost microcomputers, such as the RaspberryPi, can be used by operators to substantially improve established measuring systems via effective sampling devices. Furthermore, the results of this study highlight the importance of adequate sample pretreatment for the quality of on-site measurements.
Assuntos
Glucuronidase/metabolismo , Microcomputadores , Software , Purificação da Água/métodos , Análise Custo-Benefício , Sedimentos Geológicos , Rios , Purificação da Água/economia , Purificação da Água/instrumentaçãoRESUMO
The current study reports the application of chalcopyrite semiconductor CuInS2 (CIS) nanofibers for the reduction of CO2 to CO with a remarkable Faradaic efficiency of 77 ± 4%. Initially the synthesis of CuInS2 nanofibers was carried out by adaptable electrospinning technique. To reduce the imperfection in the crystalline fiber, polyacrylonitrile (PAN) was selected as template polymer. Afterward, the desired chemical structure of nanofibers was achieved through sulfurization process. Making continuous CuInS2 nanofibers on the cathode surface by the electrospinning method brings the advantages of being economical, environmentally safe, and versatile. The obtained nanofibers of well investigated size and diameter according to the SEM (scanning electron microscope) were used in electrochemical studies. An improvement of Faradaic efficiency was achieved with the catalytic active CuInS2 in nanofibrous structure as compared to the solution processed CuInS2. This underlines the important effect of the electrode fabrication on the catalytic performance. Being less contaminated as compared to solution processing, and having a well-defined composition and increased catalytically active area, the CuInS2 nanofiber electrodes prepared by the electrospinning technique show a 4 times higher Faradaic efficiency. Furthermore, in this study, attention was paid to the stability of the CuInS2 nanofiber electrodes. The electrochemical reduction of CO2 to CO by using CIS nanofibers coated onto FTO electrodes was carried out for 10 h in total. The observed current density of 0.22 mA cm-2 and the stability of CIS nanofiber electrodes are found to be competitive with other heterogeneous electrocatalysts. Hence, we believe that the fabrication and application of nanofibrous materials through the electrospinning technique might be of interest for electrocatalytic studies in CO2 reduction.
RESUMO
Electron-phonon interactions of free charge-carriers in doped pi-conjugated polymers are conceptually described by 1-dimensional (1D) delocalization. Thereby, polaronic transitions fit the 1D-Froehlich model in quasi-confined chains. However, recent developments in conjugated polymers have diversified the backbones to become elaborate heterocylcic macromolecules. Their complexity makes it difficult to investigate the electron-phonon coupling. In this work we resolve the electron-phonon interactions in the ground and doped state in a complex push-pull polymer. We focus on the polaronic transitions using in-situ spectroscopy to work out the differences between single-unit and push-pull systems to obtain the desired structural- electronic correlations in the doped state. We apply the classic 1D-Froehlich model to generate optical model fits. Interestingly, we find the 1D-approach in push-pull polarons in agreement to the model, pointing at the strong 1D-character and plain electronic structure of the push-pull structure. In contrast, polarons in the single-unit polymer emerge to a multi- dimensional problem difficult to resolve due to their anisotropy. Thus, we report an enhancement of the 1D-character by the push-pull concept in the doped state - an important view in light of the main purpose of push-pull polymers for photovoltaic devices.
RESUMO
Detection of enzymatic activities has been proposed as a rapid surrogate for the culture-based microbiological pollution monitoring of water resources. This paper presents the results of tests on four fully automated prototype instruments for the on-site monitoring of beta-d-glucuronidase (GLUC) activity. The tests were performed on sediment-laden stream water in the Hydrological Open Air Laboratory (HOAL) during the period of March 2014 to March 2015. The dominant source of faecal pollution in the stream was swine manure applied to the fields within the catchment. The experiments indicated that instrument pairs with the same construction design yielded highly consistent results (R(2) = 0.96 and R(2) = 0.94), whereas the results between different designs were less consistent (R(2) = 0.71). Correlations between the GLUC activity measured on-site and culture-based Escherichia coli analyses over the entire study period yielded R(2) = 0.52 and R(2) = 0.47 for the two designs, respectively. The correlations tended to be higher at the event scale. The GLUC activity was less correlated with suspended sediment concentrations than with E. coli, which is interpreted in terms of indicator applicability and the time since manure application. The study shows that this rapid assay can yield consistent results over a long period of on-site operation in technically challenging habitats. Although the use of GLUC activity as a proxy for culture-based assays could not be proven for the observed habitat, the study results suggest that this biochemical indicator has high potential for implementation in early warning systems.
Assuntos
Glucuronidase , Rios , Animais , Monitoramento Ambiental/instrumentação , Escherichia coli , Fezes/microbiologia , Suínos , Microbiologia da ÁguaRESUMO
Spectroscopic measurements in the infrared range combined with electrochemistry are a powerful technique for investigation of organic semiconductors to track changes during oxidation and reduction (p- and n-doping) processes. For these measurements it is important that the studied material, mostly deposited as a thin film on an internal reflection element, does not dissolve during this characterization. In this study we introduce a technique that allows infrared spectroelectrochemical characterization of films of these materials for the first time. In many cases so far this has been impossible, due to solubility in the oxidized and/or reduced form. This novel technique is shown on thin films of quinacridone by adding a protection layer of poly(vinyl alcohol) (PVA).
RESUMO
The bacterioplankton diversity in large rivers has thus far been under-sampled despite the importance of streams and rivers as components of continental landscapes. Here, we present a comprehensive dataset detailing the bacterioplankton diversity along the midstream of the Danube River and its tributaries. Using 16S rRNA-gene amplicon sequencing, our analysis revealed that bacterial richness and evenness gradually declined downriver in both the free-living and particle-associated bacterial communities. These shifts were also supported by beta diversity analysis, where the effects of tributaries were negligible in regards to the overall variation. In addition, the river was largely dominated by bacteria that are commonly observed in freshwaters. Dominated by the acI lineage, the freshwater SAR11 (LD12) and the Polynucleobacter group, typical freshwater taxa increased in proportion downriver and were accompanied by a decrease in soil and groundwater-affiliated bacteria. Based on views of the meta-community and River Continuum Concept, we interpret the observed taxonomic patterns and accompanying changes in alpha and beta diversity with the intention of laying the foundation for a unified concept for river bacterioplankton diversity.