Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38644094

RESUMO

The pandemic scale of diabetes mellitus is alarming, its complications remain devastating, and current treatments still pose a major burden on those affected and on the healthcare system as a whole. As the disease emanates from the destruction or dysfunction of insulin-producing pancreatic ß-cells, a real cure requires their restoration and protection. An attractive strategy is to regenerate ß-cells directly within the pancreas; however, while several approaches for ß-cell regeneration have been proposed in the past, clinical translation has proven challenging. This review scrutinizes recent findings in ß-cell regeneration and discusses their potential clinical implementation. Hereby, we aim to delineate a path for innovative, targeted therapies to help shift from 'caring for' to 'curing' diabetes.

2.
Life (Basel) ; 14(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38541645

RESUMO

Childhood obesity, affecting 29% of 7-9-year-olds across 33 European countries, is a significant public health challenge. Its persistence into adulthood poses grave health risks influenced by genetic, environmental, and socio-economic factors. Belgium introduced a new care pathway in December 2023, based on the Edmonton Obesity Staging System for Pediatrics (EOSS-P), addressing four health domains and staging obesity severity. This pathway operates across three levels: primary care physicians, Paediatric Multidisciplinary Obesity Management Centres (PMOCs), and Centers of Expertise for Paediatric Obesity Management (CEPOs). Each stage of EOSS-P demands tailored interventions. Early stages involve dietary interventions, physical activity promotion, and behavior modifications. As obesity severity progresses, treatments intensify, encompassing psychological support, anti-obesity medications, and, in some cases, bariatric surgery. Throughout these stages, the involvement of multidisciplinary teams is crucial, emphasizing family-based approaches and continuous monitoring. This article provides detailed guidelines for healthcare professionals, delineating interventions and recommendations tailored to each EOSS-P stage. It emphasizes a holistic approach that extends beyond BMI-based diagnosis, promoting personalized care and prompt escalations between care levels, thereby ensuring optimal management of childhood obesity. This comprehensive framework aims to address the complexities of childhood obesity, emphasizing the importance of timely and targeted interventions for better health outcomes.

3.
JCEM Case Rep ; 1(6): luad124, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38045866

RESUMO

Premature ovarian insufficiency (POI) is a rare cause of primary amenorrhea in adolescents. For young women with uncertain etiology of POI, genetic and autoimmune testing may be recommended to assist in treatment and management decisions. This report presents a case of POI in a 16-year-old adolescent with both poly-autoimmune disease and a heterozygous missense variant in the bone morphogenic factor 15 (BMP15) gene, both potentially involved in the pathogenesis of POI. Accurately distinguishing between autoimmune and genetic causes is crucial for effective treatment and counseling. In addition, given the significant psychological impact and the need for reproductive options counseling, a multidisciplinary approach that includes psychological support is highly recommended.

4.
Theranostics ; 13(15): 5483-5500, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37908728

RESUMO

Rationale: Although promising responses are obtained in patients treated with immune checkpoint inhibitors targeting programmed death ligand 1 (PD-L1) and its receptor programmed death-1 (PD-1), only a fraction of patients benefits from this immunotherapy. Cancer vaccination may be an effective approach to improve the response to immune checkpoint inhibitors anti-PD-L1/PD-1 therapy. However, there is a lack of research on the dynamics of PD-L1 expression in response to cancer vaccination. Methods: We performed non-invasive whole-body imaging to visualize PD-L1 expression at different timepoints after vaccination of melanoma-bearing mice. Mice bearing ovalbumin (OVA) expressing B16 tumors were i.v. injected with the Galsome mRNA vaccine: OVA encoding mRNA lipoplexes co-encapsulating a low or a high dose of the atypical adjuvant α-galactosylceramide (αGC) to activate invariant natural killer T (iNKT) cells. Serial non-invasive whole-body immune imaging was performed using a technetium-99m (99mTc)-labeled anti-PD-L1 nanobody, single-photon emission computerized tomography (SPECT) and X-ray computed tomography (CT) images were quantified. Additionally, cellular expression of PD-L1 was evaluated with flow cytometry. Results: SPECT/CT-imaging showed a rapid and systemic upregulation of PD-L1 after vaccination. PD-L1 expression could not be correlated to the αGC-dose, although we observed a dose-dependent iNKT cell activation. Dynamics of PD-L1 expression were organ-dependent and most pronounced in lungs and liver, organs to which the vaccine was distributed. PD-L1 expression in lungs increased immediately after vaccination and gradually decreased over time, whereas in liver, vaccination-induced PD-L1 upregulation was short-lived. Flow cytometric analysis of these organs further showed myeloid cells as well as non-immune cells with elevated PD-L1 expression in response to vaccination. SPECT/CT imaging of the tumor demonstrated that the expression of PD-L1 remained stable over time and was overall not affected by vaccination although flow cytometric analysis at the cellular level demonstrated changes in PD-L1 expression in various immune cell populations following vaccination. Conclusion: Repeated non-invasive whole-body imaging using 99mTc-labeled anti-PD-L1 nanobodies allows to document the dynamic nature of PD-L1 expression upon vaccination. Galsome vaccination rapidly induced systemic upregulation of PD-L1 expression with the most pronounced upregulation in lungs and liver while flow cytometry analysis showed upregulation of PD-L1 in the tumor microenvironment. This study shows that imaging using nanobodies may be useful for monitoring vaccine-mediated PD-L1 modulation in patients and could provide a rationale for combination therapy. To the best of our knowledge, this is the first report that visualizes PD-L1 expression upon cancer vaccination.


Assuntos
Melanoma , Células T Matadoras Naturais , Anticorpos de Domínio Único , Humanos , Camundongos , Animais , Antígeno B7-H1 , Células T Matadoras Naturais/metabolismo , Anticorpos de Domínio Único/metabolismo , Inibidores de Checkpoint Imunológico/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T CD8-Positivos , Tomografia Computadorizada de Emissão de Fóton Único , Tomografia Computadorizada por Raios X , Vacinas Sintéticas , Melanoma/diagnóstico por imagem , Melanoma/terapia , Microambiente Tumoral , Vacinas de mRNA
5.
J Med Case Rep ; 17(1): 195, 2023 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-37179382

RESUMO

INTRODUCTION: Pure androgen-secreting adrenocortical tumors are a rare but important cause of peripheral precocious puberty. CASE PRESENTATION: Here, we report a pure androgen-secreting adrenocortical tumor in a 2.5-year-old boy presenting with penile enlargement, pubic hair, frequent erections, and rapid linear growth. We confirmed the diagnosis through laboratory tests, medical imaging, and histology. Furthermore, genetic testing detected a pathogenic germline variant in the TP53 gene, molecularly confirming underlying Li-Fraumeni syndrome. DISCUSSION: Only 15 well-documented cases of pure androgen-secreting adrenocortical tumors have been reported so far. No clinical or imaging signs were identified to differentiate adenomas from carcinomas, and no other cases of Li-Fraumeni syndrome were diagnosed in the four patients that underwent genetic testing. However, diagnosing Li-Fraumeni syndrome is important as it implies a need for intensive tumor surveillance and avoidance of ionizing radiation. CONCLUSION: In this article, we emphasize the need to screen for TP53 gene variants in children with androgen-producing adrenal adenomas and report an association with arterial hypertension.


Assuntos
Neoplasias do Córtex Suprarrenal , Síndrome de Li-Fraumeni , Puberdade Precoce , Masculino , Criança , Humanos , Pré-Escolar , Síndrome de Li-Fraumeni/complicações , Síndrome de Li-Fraumeni/diagnóstico , Síndrome de Li-Fraumeni/genética , Genes p53 , Androgênios , Puberdade Precoce/etiologia , Neoplasias do Córtex Suprarrenal/complicações , Neoplasias do Córtex Suprarrenal/genética
7.
Front Endocrinol (Lausanne) ; 13: 802351, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35813646

RESUMO

Aims/Hypothesis: Caused by biallelic mutations of the gene encoding the transcription factor RFX6, the rare Mitchell-Riley syndrome (MRS) comprises neonatal diabetes, pancreatic hypoplasia, gallbladder agenesis or hypoplasia, duodenal atresia, and severe chronic diarrhea. So far, sixteen cases have been reported, all with a poor prognosis. This study discusses the multidisciplinary intensive clinical management of 4 new cases of MRS that survived over the first 2 years of life. Moreover, it demonstrates how the mutations impair the RFX6 function. Methods: Clinical records were analyzed and described in detail. The functional impact of two RFX6R181W and RFX6V506G variants was assessed by measuring their ability to transactivate insulin transcription and genes that encode the L-type calcium channels required for normal pancreatic beta-cell function. Results: All four patients were small for gestational age (SGA) and prenatally diagnosed with duodenal atresia. They presented with neonatal diabetes early in life and were treated with intravenous insulin therapy before switching to subcutaneous insulin pump therapy. All patients faced recurrent hypoglycemic episodes, exacerbated when parenteral nutrition (PN) was disconnected. A sensor-augmented insulin pump therapy with a predictive low-glucose suspension system was installed with good results. One patient had a homozygous c.1517T>G (p.Val506Gly) mutation, two patients had a homozygous p.Arg181Trp mutation, and one patient presented with new compound heterozygosity. The RFX6V506G and RFX6R181W mutations failed to transactivate the expression of insulin and genes that encode L-type calcium channel subunits required for normal pancreatic beta-cell function. Conclusions/Interpretation: Multidisciplinary and intensive disease management improved the clinical outcomes in four patients with MRS, including adjustment of parenteral/oral nutrition progression and advanced diabetes technologies. A better understanding of RFX6 function, in both intestine and pancreas cells, may break ground in new therapies, particularly regarding the use of drugs that modulate the enteroendocrine system.


Assuntos
Diabetes Mellitus , Doenças do Recém-Nascido , Diabetes Mellitus/diagnóstico , Obstrução Duodenal , Doenças da Vesícula Biliar , Humanos , Recém-Nascido , Insulina/genética , Atresia Intestinal , Mutação , Fatores de Transcrição de Fator Regulador X/genética , Fatores de Transcrição de Fator Regulador X/metabolismo
8.
PLoS One ; 16(10): e0258653, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34669746

RESUMO

BACKGROUND AND AIM: A fraction of children with obesity have increased serum cortisol levels. In this study, we describe the clinical characteristics of obese children and adolescents with elevated morning serum cortisol levels and the relationship between the cortisol levels and components of the metabolic syndrome. METHODS: Retrospective medical record review study of children aged 4 to 18 years with overweight or obesity seen for obesity management in the Pediatric Obesity Clinic of the UZ Brussel between 2013 and 2015. RESULTS: A total of 234 children (99 boys and 135 girls) with overweight (BMI z-score > 1.3) without underlying endocrine or genetic conditions were included. Mean (SD) age was 10.1 (2.8) years, BMI SD-score 2.5 (0.6), and body fat percentage 37% (7.9). Serum fasting cortisol levels were elevated (>180 µg/L) in 49 children, normal (62-180 µg/L) in 168, and decreased (<62 µg/L) in 12. Serum fasting cortisol was not significantly correlated with gender, age, or degree of adiposity. But correlated significantly with fasting glucose (Rs = 0.193; p < 0.005), triglycerides (Rs = 0. 143; p < 0.05), fibrinogen (Rs = 0.144; p < 0.05) and leptin levels (Rs = 0.145; p < 0.05). After adjustment for serum insulin and leptin, the correlation between serum cortisol and fasting glucose remained significant. CONCLUSION: Elevated morning serum cortisol levels were found in 20% of overweight or obese children and adolescents, irrespective of the degree of adiposity, and were associated with higher fasting glucose, irrespective of underlying insulin resistance. The long-term cardiometabolic consequences of hypercortisolemia in childhood obesity needs further study.


Assuntos
Glicemia/análise , Jejum/sangue , Hidrocortisona/sangue , Síndrome Metabólica/diagnóstico , Sobrepeso/metabolismo , Obesidade Infantil/metabolismo , Adolescente , Bélgica , Criança , Pré-Escolar , Feminino , Humanos , Leptina/sangue , Masculino , Síndrome Metabólica/sangue , Sobrepeso/sangue , Obesidade Infantil/sangue , Estudos Retrospectivos
9.
Eur J Endocrinol ; 185(2): 323-332, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34125705

RESUMO

CONTEXT: Short stature in children is a common reason for referral to pediatric endocrinologists. The underlying cause of short stature remains unclear in many cases and patients often receive unsatisfactory, descriptive diagnoses. While textbooks underline the rarity of genetic causes of growth hormone (GH) insensitivity and the severity of its associated growth failure, increased genetic testing in patients with short stature of unclear origin has revealed gene defects in the GH/insulin-like growth factor (IGF-I) axis associated with milder phenotypes. As such, heterozygous IGF1 gene defects have been reported as a cause of mild and severe short stature. Here, we aimed to describe the clinical and hormonal profile of children with IGF1 haploinsufficiency and their short-term response to growth hormone treatment (GHT). CASE DESCRIPTIONS: We describe five patients presenting with short stature, microcephaly, and in four out of five born small for gestational age diagnosed with IGF1 haploinsufficiency. The phenotype of these patients resembles that of previously described cases with similar gene defects. In our series, segregation of the short stature with the IGF1 deletion is evident from the pedigrees and our data suggests a modest response to GHT. CONCLUSIONS: This study is the first case series of complete heterozygous IGF1 deletions in children. The specific genetic defects provide a clear image of the phenotype of IGF1 haploinsufficiency - unbiased by heterozygous mutations with possible dominant negative effects on IGF-I function. We increase the evidence for IGF1 haploinsufficiency as a cause of short stature, microcephaly, and SGA.


Assuntos
Nanismo/diagnóstico , Nanismo/genética , Haploinsuficiência/genética , Recém-Nascido Pequeno para a Idade Gestacional/fisiologia , Fator de Crescimento Insulin-Like I/genética , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Linhagem
10.
Clin Case Rep ; 9(4): 1937-1942, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33936619

RESUMO

Psychological stress is a risk factor for primary polydipsia in adolescents without psychiatric comorbidity. Taking a detailed family and social history can help to distinguish primary polydipsia from diabetes insipidus in adolescents with challenging presentations of polydipsia and polyuria.

12.
Cells ; 10(1)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33477961

RESUMO

Diabetes mellitus is a pandemic metabolic disorder that results from either the autoimmune destruction or the dysfunction of insulin-producing pancreatic beta cells. A promising cure is beta cell replacement through the transplantation of islets of Langerhans. However, donor shortage hinders the widespread implementation of this therapy. Human pluripotent stem cells, including embryonic stem cells and induced pluripotent stem cells, represent an attractive alternative beta cell source for transplantation. Although major advances over the past two decades have led to the generation of stem cell-derived beta-like cells that share many features with genuine beta cells, producing fully mature beta cells remains challenging. Here, we review the current status of beta cell differentiation protocols and highlight specific challenges that are associated with producing mature beta cells. We address the challenges and opportunities that are offered by monogenic forms of diabetes. Finally, we discuss the remaining hurdles for clinical application of stem cell-derived beta cells and the status of ongoing clinical trials.


Assuntos
Diferenciação Celular , Diabetes Mellitus Tipo 1 , Células-Tronco Embrionárias Humanas , Células-Tronco Pluripotentes Induzidas , Células Secretoras de Insulina , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 1/terapia , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/patologia , Células-Tronco Embrionárias Humanas/transplante , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Células-Tronco Pluripotentes Induzidas/transplante , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Células Secretoras de Insulina/transplante
13.
Virchows Arch ; 478(6): 1209-1214, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32833039

RESUMO

Insulitis is a characteristic inflammatory lesion consisting of immune cell infiltrates around and within the pancreatic islets of patients with recent-onset type 1 diabetes (T1D). The infiltration is typically mild, both in terms of the number of infiltrating cells and the number of islets affected. Here, we present an unusual histopathological case study of a 66-year-old female patient with long-standing T1D, insulitis, and islet-associated lymphoid tissue. Most islets in the head of the pancreas of this patient were insulin-deficient, whereas the islets in the tail appeared normal. Insulitis was present in 0.84% of the insulin-containing islets and three islets had large lymphocytic infiltrates resembling tertiary lymphoid structures (TLS). Of note, this is the first description of potential TLS in the endocrine pancreas of a patient with T1D. Their association with a marked residual beta cell mass is of interest and may hint at new insights into disease progression and regulation of autoimmunity.


Assuntos
Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/patologia , Ilhotas Pancreáticas/patologia , Linfonodos/patologia , Idoso , Autoimunidade/imunologia , Diabetes Mellitus Tipo 1/complicações , Progressão da Doença , Feminino , Humanos , Insulina/metabolismo , Ilhotas Pancreáticas/imunologia , Linfonodos/imunologia
14.
Diabetologia ; 63(10): 1974-1980, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32894307

RESUMO

Improving our understanding of mammalian pancreas development is crucial for the development of more effective cellular therapies for diabetes. Most of what we know about mammalian pancreas development stems from mouse genetics. We have learnt that a unique set of transcription factors controls endocrine and exocrine cell differentiation. Transgenic mouse models have been instrumental in studying the function of these transcription factors. Mouse and human pancreas development are very similar in many respects, but the devil is in the detail. To unravel human pancreas development in greater detail, in vitro cellular models (including directed differentiation of stem cells, human beta cell lines and human pancreatic organoids) are used; however, in vivo validation of these results is still needed. The current best 'model' for studying human pancreas development are individuals with monogenic forms of diabetes. In this review, we discuss mammalian pancreas development, highlight some discrepancies between mouse and human, and discuss selected transcription factors that, when mutated, cause permanent neonatal diabetes. Graphical abstract.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Pâncreas/embriologia , Fatores de Transcrição/genética , Animais , Linhagem Celular , Diabetes Mellitus/genética , Humanos , Técnicas In Vitro , Células Secretoras de Insulina , Camundongos , Organoides , Pâncreas/metabolismo , Células-Tronco Pluripotentes
15.
J Clin Invest ; 129(9): 3511-3520, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31478912

RESUMO

Patients with type 1 or type 2 diabetes have an insufficiency in their functional ß cell mass. To advance diabetes treatment and to work toward a cure, a better understanding of how to protect the pancreatic ß cells against autoimmune or metabolic assaults (e.g., obesity, gestation) will be required. Over the past decades, ß cell protection has been extensively investigated in rodents both in vivo and in vitro using isolated islets or rodent ß cell lines. Transferring these rodent data to humans has long been challenging, at least partly for technical reasons: primary human islet preparations were scarce and functional human ß cell lines were lacking. In 2011, we described a robust protocol of targeted oncogenesis in human fetal pancreas and produced the first functional human ß cell line, and in subsequent years additional lines with specific traits. These cell lines are currently used by more than 150 academic and industrial laboratories worldwide. In this Review, we first explain how we developed the human ß cell lines and why we think we succeeded where others, despite major efforts, did not. Next, we discuss the use of such functional human ß cell lines and share some perspectives on their use to advance diabetes research.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Animais , Linhagem Celular , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 1/terapia , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/terapia , Humanos , Células Secretoras de Insulina/patologia , Transplante das Ilhotas Pancreáticas
16.
Diabetologia ; 62(11): 1961-1968, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31414144

RESUMO

Reciprocal signalling between the endothelium and the pancreatic epithelium is crucial for coordinated differentiation of the embryonic endocrine and exocrine pancreas. In the adult pancreas, islets depend on their dense capillary network to adequately respond to changes in plasma glucose levels. Vascular changes contribute to the onset and progression of both type 1 and type 2 diabetes. Impaired revascularisation of islets transplanted in individuals with type 1 diabetes is linked to islet graft failure and graft loss. This review summarises our understanding of the role of vascular endothelial growth factor-A (VEGF-A) and endothelial cells in beta cell development, physiology and disease. In addition, the therapeutic potential of modulating VEGF-A levels in beta and beta-like cells for transplantation is discussed.


Assuntos
Vasos Sanguíneos/metabolismo , Células Endoteliais/citologia , Células Secretoras de Insulina/citologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Glicemia/análise , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Progressão da Doença , Homeostase , Humanos , Células Secretoras de Insulina/transplante , Ilhotas Pancreáticas/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Neovascularização Fisiológica , Pâncreas/metabolismo , Ratos , Regeneração , Transdução de Sinais
17.
Diabetologia ; 61(8): 1804-1810, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29789879

RESUMO

AIMS/HYPOTHESIS: The initial avascular period following islet transplantation seriously compromises graft function and survival. Enhancing graft revascularisation to improve engraftment has been attempted through virus-based delivery of angiogenic triggers, but risks associated with viral vectors have hampered clinical translation. In vitro transcribed mRNA transfection circumvents these risks and may be used for improving islet engraftment. METHODS: Mouse and human pancreatic islet cells were transfected with mRNA encoding the angiogenic growth factor vascular endothelial growth factor A (VEGF-A) before transplantation under the kidney capsule in mice. RESULTS: At day 7 post transplantation, revascularisation of grafts transfected with Vegf-A (also known as Vegfa) mRNA was significantly higher compared with non-transfected or Gfp mRNA-transfected controls in mouse islet grafts (2.11- and 1.87-fold, respectively) (vessel area/graft area, mean ± SEM: 0.118 ± 0.01 [n = 3] in Vegf-A mRNA transfected group (VEGF) vs 0.056 ± 0.01 [n = 3] in no RNA [p < 0.05] vs 0.063 ± 0.02 [n = 4] in Gfp mRNA transfected group (GFP) [p < 0.05]); EndoC-bH3 grafts (2.85- and 2.48-fold. respectively) (0.085 ± 0.02 [n = 4] in VEGF vs 0.030 ± 0.004 [n = 4] in no RNA [p < 0.05] vs 0.034 ± 0.01 [n = 5] in GFP [p < 0.05]); and human islet grafts (3.17- and 3.80-fold, respectively) (0.048 ± 0.013 [n = 3] in VEGF vs 0.015 ± 0.0051 [n = 4] in no RNA [p < 0.01] vs 0.013 ± 0.0046 [n = 4] in GFP [p < 0.01]). At day 30 post transplantation, human islet grafts maintained a vascularisation benefit (1.70- and 1.82-fold, respectively) (0.049 ± 0.0042 [n = 8] in VEGF vs 0.029 ± 0.0052 [n = 5] in no RNA [p < 0.05] vs 0.027 ± 0.0056 [n = 4] in GFP [p < 0.05]) and a higher beta cell volume (1.64- and 2.26-fold, respectively) (0.0292 ± 0.0032 µl [n = 7] in VEGF vs 0.0178 ± 0.0021 µl [n = 5] in no RNA [p < 0.01] vs 0.0129 ± 0.0012 µl [n = 4] in GFP [p < 0.001]). CONCLUSIONS/INTERPRETATION: Vegf-A mRNA transfection before transplantation provides a promising and safe strategy to improve engraftment of islets and other cell-based implants.


Assuntos
Células Secretoras de Insulina/citologia , Ilhotas Pancreáticas/citologia , Neovascularização Fisiológica , RNA Mensageiro/genética , Transfecção , Fator A de Crescimento do Endotélio Vascular/genética , Animais , Sobrevivência Celular , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/transplante , Transplante das Ilhotas Pancreáticas , Camundongos
18.
Physiol Rev ; 98(3): 1143-1167, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29717931

RESUMO

Diabetes mellitus results from disturbed glucose homeostasis due to an absolute (type 1) or relative (type 2) deficiency of insulin, a peptide hormone almost exclusively produced by the beta cells of the endocrine pancreas in a tightly regulated manner. Current therapy only delays disease progression through insulin injection and/or oral medications that increase insulin secretion or sensitivity, decrease hepatic glucose production, or promote glucosuria. These drugs have turned diabetes into a chronic disease as they do not solve the underlying beta cell defects or entirely prevent the long-term complications of hyperglycemia. Beta cell replacement through islet transplantation is a more physiological therapeutic alternative but is severely hampered by donor shortage and immune rejection. A curative strategy should combine newer approaches to immunomodulation with beta cell replacement. Success of this approach depends on the development of practical methods for generating beta cells, either in vitro or in situ through beta cell replication or beta cell differentiation. This review provides an overview of human beta cell generation.


Assuntos
Técnicas de Cultura de Células , Células Secretoras de Insulina/fisiologia , Regeneração , Animais , Homeostase , Humanos , Células Secretoras de Insulina/transplante
19.
PLoS One ; 13(2): e0191249, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29408875

RESUMO

Pancreas injury by partial duct ligation (PDL) activates beta cell differentiation and proliferation in adult mouse pancreas but remains controversial regarding the anticipated increase in beta cell volume. Several reports unable to show beta cell volume augmentation in PDL pancreas used automated digital image analysis software. We hypothesized that fully automatic beta cell morphometry without manual micrograph artifact remediation introduces bias and therefore might be responsible for reported discrepancies and controversy. However, our present results prove that standard digital image processing with automatic thresholding is sufficiently robust albeit less sensitive and less adequate to demonstrate a significant increase in beta cell volume in PDL versus Sham-operated pancreas. We therefore conclude that other confounding factors such as quality of surgery, selection of samples based on relative abundance of the transcription factor Neurogenin 3 (Ngn3) and tissue processing give rise to inter-laboratory inconsistencies in beta cell volume quantification in PDL pancreas.


Assuntos
Automação , Ilhotas Pancreáticas/patologia , Animais
20.
Diabetes ; 67(1): 58-70, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28986398

RESUMO

Inhibition of notch signaling is known to induce differentiation of endocrine cells in zebrafish and mouse. After performing an unbiased in vivo screen of ∼2,200 small molecules in zebrafish, we identified an inhibitor of Cdk5 (roscovitine), which potentiated the formation of ß-cells along the intrapancreatic duct during concurrent inhibition of notch signaling. We confirmed and characterized the effect with a more selective Cdk5 inhibitor, (R)-DRF053, which specifically increased the number of duct-derived ß-cells without affecting their proliferation. By duct-specific overexpression of the endogenous Cdk5 inhibitors Cdk5rap1 or Cdkal1 (which previously have been linked to diabetes in genome-wide association studies), as well as deleting cdk5, we validated the role of chemical Cdk5 inhibition in ß-cell differentiation by genetic means. Moreover, the cdk5 mutant zebrafish displayed an increased number of ß-cells independently of inhibition of notch signaling, in both the basal state and during ß-cell regeneration. Importantly, the effect of Cdk5 inhibition to promote ß-cell formation was conserved in mouse embryonic pancreatic explants, adult mice with pancreatic ductal ligation injury, and human induced pluripotent stem (iPS) cells. Thus, we have revealed a previously unknown role of Cdk5 as an endogenous suppressor of ß-cell differentiation and thereby further highlighted its importance in diabetes.


Assuntos
Quinase 5 Dependente de Ciclina/metabolismo , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Ductos Pancreáticos/citologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Quinase 5 Dependente de Ciclina/genética , Estudo de Associação Genômica Ampla , Genótipo , Larva/citologia , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/fisiologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA