Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39149363

RESUMO

Genetic disorders such as neurofibromatosis type 1 increase vulnerability to cognitive and behavioral disorders, such as autism spectrum disorder and attention-deficit/hyperactivity disorder. Neurofibromatosis type 1 results from loss-of-function mutations in the neurofibromin gene and subsequent reduction in the neurofibromin protein (Nf1). While the mechanisms have yet to be fully elucidated, loss of Nf1 may alter neuronal circuit activity leading to changes in behavior and susceptibility to cognitive and behavioral comorbidities. Here we show that mutations decreasing Nf1 expression alter motor behaviors, impacting the patterning, prioritization, and behavioral state dependence in a Drosophila model of neurofibromatosis type 1. Loss of Nf1 increases spontaneous grooming in a nonlinear spatial and temporal pattern, differentially increasing grooming of certain body parts, including the abdomen, head, and wings. This increase in grooming could be overridden by hunger in food-deprived foraging animals, demonstrating that the Nf1 effect is plastic and internal state-dependent. Stimulus-evoked grooming patterns were altered as well, with nf1 mutants exhibiting reductions in wing grooming when coated with dust, suggesting that hierarchical recruitment of grooming command circuits was altered. Yet loss of Nf1 in sensory neurons and/or grooming command neurons did not alter grooming frequency, suggesting that Nf1 affects grooming via higher-order circuit alterations. Changes in grooming coincided with alterations in walking. Flies lacking Nf1 walked with increased forward velocity on a spherical treadmill, yet there was no detectable change in leg kinematics or gait. Thus, loss of Nf1 alters motor function without affecting overall motor coordination, in contrast to other genetic disorders that impair coordination. Overall, these results demonstrate that loss of Nf1 alters the patterning and prioritization of repetitive behaviors, in a state-dependent manner, without affecting motor coordination.

2.
Nat Commun ; 15(1): 6873, 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39127721

RESUMO

Ribosomes are regulated by evolutionarily conserved ubiquitination/deubiquitination events. We uncover the role of the deubiquitinase OTUD6 in regulating global protein translation through deubiquitination of the RPS7/eS7 subunit on the free 40 S ribosome in vivo in Drosophila. Coimmunoprecipitation and enrichment of monoubiquitinated proteins from catalytically inactive OTUD6 flies reveal RPS7 as the ribosomal substrate. The 40 S protein RACK1 and E3 ligases CNOT4 and RNF10 function upstream of OTUD6 to regulate alkylation stress. OTUD6 interacts with RPS7 specifically on the free 40 S, and not on 43 S/48 S initiation complexes or the translating ribosome. Global protein translation levels are bidirectionally regulated by OTUD6 protein abundance. OTUD6 protein abundance is physiologically regulated in aging and in response to translational and alkylation stress. Thus, OTUD6 may promote translation initiation, the rate limiting step in protein translation, by titering the amount of 40 S ribosome that recycles.


Assuntos
Proteínas de Drosophila , Biossíntese de Proteínas , Proteínas Ribossômicas , Ubiquitinação , Animais , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Ribossomos/metabolismo , Estresse Fisiológico , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética
3.
Learn Mem ; 31(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38862172

RESUMO

How does the brain translate sensory information into complex behaviors? With relatively small neuronal numbers, readable behavioral outputs, and an unparalleled genetic toolkit, the Drosophila mushroom body (MB) offers an excellent model to address this question in the context of associative learning and memory. Recent technological breakthroughs, such as the freshly completed full-brain connectome, multiomics approaches, CRISPR-mediated gene editing, and machine learning techniques, led to major advancements in our understanding of the MB circuit at the molecular, structural, physiological, and functional levels. Despite significant progress in individual MB areas, the field still faces the fundamental challenge of resolving how these different levels combine and interact to ultimately control the behavior of an individual fly. In this review, we discuss various aspects of MB research, with a focus on the current knowledge gaps, and an outlook on the future methodological developments required to reach an overall view of the neurobiological basis of learning and memory.


Assuntos
Drosophila , Corpos Pedunculados , Corpos Pedunculados/fisiologia , Animais , Drosophila/fisiologia , Memória/fisiologia , Aprendizagem por Associação/fisiologia
4.
Learn Mem ; 31(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38876485

RESUMO

The common fruit fly Drosophila melanogaster provides a powerful platform to investigate the genetic, molecular, cellular, and neural circuit mechanisms of behavior. Research in this model system has shed light on multiple aspects of brain physiology and behavior, from fundamental neuronal function to complex behaviors. A major anatomical region that modulates complex behaviors is the mushroom body (MB). The MB integrates multimodal sensory information and is involved in behaviors ranging from sensory processing/responses to learning and memory. Many genes that underlie brain disorders are conserved, from flies to humans, and studies in Drosophila have contributed significantly to our understanding of the mechanisms of brain disorders. Genetic mutations that mimic human diseases-such as Fragile X syndrome, neurofibromatosis type 1, Parkinson's disease, and Alzheimer's disease-affect MB structure and function, altering behavior. Studies dissecting the effects of disease-causing mutations in the MB have identified key pathological mechanisms, and the development of a complete connectome promises to add a comprehensive anatomical framework for disease modeling. Here, we review Drosophila models of human neurodevelopmental and neurodegenerative disorders via the effects of their underlying mutations on MB structure, function, and the resulting behavioral alterations.


Assuntos
Modelos Animais de Doenças , Corpos Pedunculados , Doenças Neurodegenerativas , Transtornos do Neurodesenvolvimento , Animais , Corpos Pedunculados/fisiologia , Doenças Neurodegenerativas/fisiopatologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/fisiopatologia , Drosophila melanogaster , Humanos , Drosophila
5.
Arch Toxicol ; 98(9): 2919-2935, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38832940

RESUMO

Okadaic acid (OA), a prevalent marine biotoxin found in shellfish, is known for causing acute gastrointestinal symptoms. Despite its potential to reach the bloodstream and the liver, the hepatic effects of OA are not well understood, highlighting a significant research gap. This study aims to comprehensively elucidate the impact of OA on the liver by examining the transcriptome, proteome, and phosphoproteome alterations in human HepaRG liver cells exposed to non-cytotoxic OA concentrations. We employed an integrative multi-omics approach, encompassing RNA sequencing, shotgun proteomics, phosphoproteomics, and targeted DigiWest analysis. This enabled a detailed exploration of gene and protein expression changes, alongside phosphorylation patterns under OA treatment. The study reveals concentration- and time-dependent deregulation in gene and protein expression, with a significant down-regulation of xenobiotic and lipid metabolism pathways. Up-regulated pathways include actin crosslink formation and a deregulation of apoptotic pathways. Notably, our results revealed that OA, as a potent phosphatase inhibitor, induces alterations in actin filament organization. Phosphoproteomics data highlighted the importance of phosphorylation in enzyme activity regulation, particularly affecting proteins involved in the regulation of the cytoskeleton. OA's inhibition of PP2A further leads to various downstream effects, including alterations in protein translation and energy metabolism. This research expands the understanding of OA's systemic impact, emphasizing its role in modulating the phosphorylation landscape, which influences crucial cellular processes. The results underscore OA's multifaceted effects on the liver, particularly through PP2A inhibition, impacting xenobiotic metabolism, cytoskeletal dynamics, and energy homeostasis. These insights enhance our comprehension of OA's biological significance and potential health risks.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ácido Okadáico , Proteômica , Ácido Okadáico/toxicidade , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Linhagem Celular Tumoral , Carcinoma Hepatocelular/metabolismo , Fosforilação , Proteoma/efeitos dos fármacos , Proteoma/metabolismo , Transcriptoma/efeitos dos fármacos , Toxinas Marinhas , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Multiômica
6.
BMC Neurosci ; 25(1): 12, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438989

RESUMO

BACKGROUND: Mutations in the gene DISC1 are associated with increased risk for schizophrenia, bipolar disorder and major depression. The study of mutated DISC1 represents a well-known and comprehensively characterized approach to understand neuropsychiatric disease mechanisms. However, previous studies have mainly used animal models or rather heterogeneous populations of iPSC-derived neurons, generated by undirected differentiation, to study the effects of DISC1 disruption. Since major hypotheses to explain neurodevelopmental, psychiatric disorders rely on altered neuronal connectivity observed in patients, an ideal iPSC-based model requires accurate representation of the structure and complexity of neuronal circuitries. In this study, we made use of an isogenic cell line with a mutation in DISC1 to study neuronal synaptic phenotypes in a culture system comprising a defined ratio of NGN2 and ASCL1/DLX2 (AD2)-transduced neurons, enriched for glutamatergic and GABAergic neurons, respectively, to mimic properties of the cortical microcircuitry. RESULTS: In heterozygous DISC1 mutant neurons, we replicated the expected phenotypes including altered neural progenitor proliferation as well as neurite outgrowth, deregulated DISC1-associated signaling pathways, and reduced synaptic densities in cultures composed of glutamatergic neurons. Cultures comprising a defined ratio of NGN2 and AD2 neurons then revealed considerably increased GABAergic synapse densities, which have not been observed in any iPSC-derived model so far. Increased inhibitory synapse densities could be associated with an increased efficiency of GABAergic differentiation, which we observed in AD2-transduced cultures of mutant neurons. Additionally, we found increased neuronal activity in GABAergic neurons through calcium imaging while the activity pattern of glutamatergic neurons remained unchanged. CONCLUSIONS: In conclusion, our results demonstrate phenotypic differences in a co-culture comprising a defined ratio of DISC1 mutant NGN2 and AD2 neurons, as compared to culture models comprising only one neuronal cell type. Altered synapse numbers and neuronal activity imply that DISC1 impacts the excitatory/inhibitory balance in NGN2/AD2 co-cultures, mainly through increased GABAergic input.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Animais , Humanos , Técnicas de Cocultura , Neurônios GABAérgicos , Mutação , Proteínas do Tecido Nervoso/genética
7.
J Exp Clin Cancer Res ; 43(1): 77, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475864

RESUMO

BACKGROUND: The DNA damage response (DDR) is a physiological network preventing malignant transformation, e.g. by halting cell cycle progression upon DNA damage detection and promoting DNA repair. Glioblastoma are incurable primary tumors of the nervous system and DDR dysregulation contributes to acquired treatment resistance. Therefore, DDR targeting is a promising therapeutic anti-glioma strategy. Here, we investigated Ataxia telangiectasia and Rad3 related (ATR) inhibition (ATRi) and functionally-instructed combination therapies involving ATRi in experimental glioma. METHODS: We used acute cytotoxicity to identify treatment efficacy as well as RNAseq and DigiWest protein profiling to characterize ATRi-induced modulations within the molecular network in glioma cells. Genome-wide CRISPR/Cas9 functional genomic screens and subsequent validation with functionally-instructed compounds and selected shRNA-based silencing were employed to discover and investigate molecular targets modifying response to ATRi in glioma cell lines in vitro, in primary cultures ex vivo and in zebrafish and murine models in vivo. RESULTS: ATRi monotherapy displays anti-glioma efficacy in vitro and ex vivo and modulates the molecular network. We discovered molecular targets by genome-wide CRISPR/Cas9 loss-of-function and activation screens that enhance therapeutic ATRi effects. We validated selected druggable targets by a customized drug library and functional assays in vitro, ex vivo and in vivo. CONCLUSION: In conclusion, our study leads to the identification of novel combination therapies involving ATRi that could inform future preclinical studies and early phase clinical trials.


Assuntos
Glioma , Peixe-Zebra , Camundongos , Animais , Linhagem Celular Tumoral , Reparo do DNA , Dano ao DNA , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
8.
Nat Commun ; 15(1): 1287, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38346946

RESUMO

Fibroblast growth factor receptor (FGFR)-2 can be inhibited by FGFR-selective or non-selective tyrosine kinase inhibitors (TKIs). Selective TKIs are approved for cholangiocarcinoma (CCA) with FGFR2 fusions; however, their application is limited by a characteristic pattern of adverse events or evocation of kinase domain mutations. A comprehensive characterization of a patient cohort treated with the non-selective TKI lenvatinib reveals promising efficacy in FGFR2-driven CCA. In a bed-to-bench approach, we investigate FGFR2 fusion proteins bearing critical tumor-relevant point mutations. These mutations confer growth advantage of tumor cells and increased resistance to selective TKIs but remain intriguingly sensitive to lenvatinib. In line with clinical observations, in-silico analyses reveal a more favorable interaction pattern of lenvatinib with FGFR2, including an increased flexibility and ligand efficacy, compared to FGFR-selective TKIs. Finally, the treatment of a patient with progressive disease and a newly developed kinase mutation during therapy with a selective inhibitor results in a striking response to lenvatinib. Our in vitro, in silico, and clinical data suggest that lenvatinib is a promising treatment option for FGFR2-driven CCA, especially when insurmountable adverse reactions of selective TKIs or acquired kinase mutations occur.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Compostos de Fenilureia , Quinolinas , Humanos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Ductos Biliares Intra-Hepáticos , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA