Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Ecol ; 30(21): 5343-5359, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34614274

RESUMO

Genomic-based epidemiology can provide insight into the origins and spread of herbicide resistance mechanisms in weeds. We used kochia (Bassia scoparia) populations resistant to the herbicide glyphosate from across western North America to test the alternative hypotheses that (i) a single EPSPS gene duplication event occurred initially in the Central Great Plains and then subsequently spread to all other geographical areas now exhibiting glyphosate-resistant kochia populations or that (ii) gene duplication occurred multiple times in independent events in a case of parallel evolution. We used qPCR markers previously developed for measuring the structure of the EPSPS tandem duplication to investigate whether all glyphosate-resistant individuals had the same EPSPS repeat structure. We also investigated population structure using simple sequence repeat markers to determine the relatedness of kochia populations from across the Central Great Plains, Northern Plains and the Pacific Northwest. We found that the original EPSPS duplication genotype was predominant in the Central Great Plains where glyphosate resistance was first reported. We identified two additional EPSPS duplication genotypes, one having geographical associations with the Northern Plains and the other with the Pacific Northwest. The EPSPS duplication genotype from the Pacific Northwest seems likely to represent a second, independent evolutionary origin of a resistance allele. We found evidence of gene flow across populations and a general lack of population structure. The results support at least two independent evolutionary origins of glyphosate resistance in kochia, followed by substantial and mostly geographically localized gene flow to spread the resistance alleles into diverse genetic backgrounds.


Assuntos
Bassia scoparia , 3-Fosfoshikimato 1-Carboxiviniltransferase/genética , Fluxo Gênico , Genômica , Glicina/análogos & derivados , Resistência a Herbicidas/genética , Humanos , Glifosato
2.
Pest Manag Sci ; 77(1): 126-130, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32954607

RESUMO

BACKGROUND: Evolution and spread of resistance to glyphosate in kochia [Bassia scoparia (L.) A.J. Scott] is a major challenge for the sustainability of glyphosate-resistant crop technology in this region. Dicamba offers a viable option to manage glyphosate-resistant kochia. However, the recent and rapid evolution of dicamba resistance in glyphosate-resistant kochia populations in Kansas (KS), and other states in the USA is a threat to the management of this weed. Our previous research suggests that two distinct mechanisms confer dicamba resistance in KS (KSUR) and NE (CSUR) kochia. CSUR kochia is dicamba-resistant due to a double mutation in an auxin and dicamba coreceptor gene (Aux/IAA16), and CSUR kochia plants show reduced dicamba translocation. However, the mechanism of dicamba resistance in KSUR is not known. The objective of this research was to determine if dicamba resistance in KSUR is due to a different mechanism and therefore evolved independently from CSUR by measuring whether the resistance traits are chromosomally linked. RESULTS: The F1 and F2 progenies from KSUR × CSUR were generated. Single dicamba rate tests were conducted using the F1 and F2 progeny. The results indicate that two different genes confer dicamba resistance in KSUR and CSUR; importantly, these two genes are not linked. CONCLUSION: This research provides evidence that different populations of kochia have independently evolved resistance to dicamba by different mechanisms, and we confirmed that the genes conferring resistance to the same herbicide in different populations are not chromosomally linked.


Assuntos
Chenopodiaceae , Herbicidas , Dicamba , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Kansas , Nebraska
3.
Pest Manag Sci ; 75(11): 2925-2933, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30843341

RESUMO

BACKGROUND: Amaranthus palmeri S. Wats is among the most problematic annual broadleaf weed species in the USA, including in Kansas. In late summer 2015, seeds of an A. palmeri population (MHR) that had survived field-use rates of 2,4-D were collected from Barton County, KS, USA. The main objectives were to: (i) confirm and characterize 2,4-D resistance in a MHR population; (ii) characterize the resistance profile of the MHR population in relation to a multiple herbicide-susceptible (MHS) population to glyphosate, chlorsulfuron, atrazine, mesotrione, fomesafen; and (iii) determine the effectiveness of alternative POST burndown herbicides for controlling MHR population. RESULTS: The MHR population had 3.2-fold resistance to 2,4-D. In addition, the MHR population also exhibited multiple resistance to glyphosate (11.8-fold), chlorsulfuron (5.0-fold), atrazine (14.4-fold), and mesotrione (13.4-fold). Furthermore, the MHR population also showed reduced sensitivity to fomesafen (2.3-fold). In a separate study, dicamba with glyphosate, atrazine or fluroxypyr + 2,4-D, and paraquat alone or with atrazine, metribuzin, saflufenacil or 2,4-D provided ≥ 99% injury to the MHR population. Similarly, saflufenacil alone or with atrazine, metribuzin or 2,4-D, and glufosinate alone or with glyphosate + 2,4-D, and glyphosate + dicamba, and a premix of bicyclopyrone + atrazine + mesotrione + S-metolachlor also effectively controlled the MHR population. CONCLUSION: This research confirms the first global case of an A. palmeri population from Kansas with multiple resistance to 2,4-D, glyphosate, chlorsulfuron, atrazine and mesotrione, and reduced sensitivity to fomesafen. Dicamba, glufosinate, paraquat, and saflufenacil alone or in tank-mixtures with PRE herbicides effectively controlled this MHR population. © 2019 Society of Chemical Industry.


Assuntos
Ácido 2,4-Diclorofenoxiacético/farmacologia , Amaranthus/efeitos dos fármacos , Resistência a Múltiplos Medicamentos , Resistência a Herbicidas , Amaranthus/fisiologia , Kansas , Controle de Plantas Daninhas
4.
Sci Rep ; 8(1): 5330, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29593313

RESUMO

Kochia scoparia is a troublesome weed across the Great Plains of North America. Glyphosate and dicamba have been used for decades to control K. scoparia. Due to extensive selection, glyphosate- and dicamba-resistant (GDR) K. scoparia have evolved in the USA. Herbicide mixtures are routinely used to improve weed control. Herbicide interactions if result in an antagonistic effect can significantly affect the management of weeds, such as K. scoparia. To uncover the interaction of glyphosate and dicamba when applied in combination in K. scoparia management the efficacies of different doses of glyphosate plus dicamba were evaluated under greenhouse and field conditions using GDR and a known glyphosate- and dicamba-susceptible (GDS) K. scoparia. The results of greenhouse and field studies suggest that the combination of glyphosate and dicamba application controlled GDS, but glyphosate alone provided a better control of GDR K. scoparia compared to glyphosate plus dicamba combinations. Furthermore, investigation of the basis of this response suggested glyphosate and dicamba interact antagonistically and consequently, the translocation of both herbicides was significantly reduced resulting in poor control of K. scoparia. Therefore, a combination of glyphosate plus dicamba may not be a viable option to control GDR K. scoparia.


Assuntos
Bassia scoparia/metabolismo , Dicamba/metabolismo , Glicina/análogos & derivados , Resistência a Herbicidas , Herbicidas/metabolismo , Desenvolvimento Vegetal , Bassia scoparia/efeitos dos fármacos , Transporte Biológico , Isótopos de Carbono/metabolismo , Dicamba/farmacologia , Relação Dose-Resposta a Droga , Glicina/metabolismo , Herbicidas/farmacologia , Desenvolvimento Vegetal/efeitos dos fármacos , Controle de Plantas Daninhas , Glifosato
5.
Pest Manag Sci ; 74(5): 1134-1142, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-27766747

RESUMO

BACKGROUND: Plant growth temperature is one of the important factors that can influence postemergent herbicide efficacy and impact weed control. Control of kochia (Kochia scoparia), a major broadleaf weed throughout the North American Great Plains, often is unsatisfactory when either glyphosate or dicamba are applied on hot summer days. We tested effects of plant growth temperature on glyphosate and dicamba phytotoxicity on two Kansas kochia populations (P1 and P2) grown under the following three day/night (d/n) temperature regimes: T1, 17.5/7.5°C; T2, 25/15°C; and T3, 32.5/22.5°C. RESULTS: Visual injury and above-ground dry biomass data from herbicide dose-response experiments indicated greater susceptibility to both glyphosate and dicamba when kochia was grown under the two cooler temperature regimes, i.e. T1 and T2. At T1, the ED50 of P1 and P2 kochia were 39 and 36 g ha-1 of glyphosate and 52 and 105 g ha-1 of dicamba, respectively. In comparison, at T3 the ED50 increased to 173 and 186 g ha-1 for glyphosate and 106 and 410 g ha-1 for dicamba, respectively, for P1 and P2. We also investigated the physiological basis of decreased glyphosate and dicamba efficacy under elevated temperatures. Kochia absorbed more glyphosate at T1 and T2 compared to T3. Conversely, there was more dicamba translocated towards meristems at T1 and T2, compared to T3. CONCLUSION: Reduced efficacy of dicamba or glyphosate to control kochia under elevated temperatures can be attributed to decreased absorption and translocation of glyphosate and dicamba, respectively. Therefore, it is recommended to apply glyphosate or dicamba when the temperature is low (e.g. d/n temperature at 25/15°C) and seedlings are small (less than 12 cm) to maximize kochia control. © 2016 Society of Chemical Industry.


Assuntos
Bassia scoparia/efeitos dos fármacos , Dicamba/farmacologia , Glicina/análogos & derivados , Herbicidas/farmacologia , Controle de Plantas Daninhas , Relação Dose-Resposta a Droga , Glicina/farmacologia , Resistência a Herbicidas , Temperatura Alta , Glifosato
6.
Pest Manag Sci ; 71(9): 1207-12, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25950428

RESUMO

BACKGROUND: Evolution of multiple herbicide resistance in weeds is a serious threat to weed management in crop production. Kochia is an economically important broadleaf weed in the U.S. Great Plains. This study aimed to confirm resistance to four sites of action of herbicides in a single kochia (Kochia scoparia L. Schrad.) population from a crop field near Garden City (GC), Kansas, and further determine the underlying mechanisms of resistance. RESULTS: One-fourth of the GC plants survived the labeled rate or higher of atrazine [photosystem II (PSII) inhibitor], and the surviving plants had the Ser-264 to Gly mutation in the psbA gene, the target site of atrazine. Results showed that 90% of GC plants survived the labeled rate of dicamba, a synthetic auxin. At least 87% of the plants survived up to 72 g a.i. ha(-1) of chlorsulfuron [acetolactate synthase (ALS) inhibitor], and analysis of the ALS gene revealed the presence of Pro-197 to Thr and/or Trp-574 to Lue mutation(s). Most GC plants also survived the labeled rate of glyphosate [5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) inhibitor), and the resistant plants had 5-9 EPSPS gene copies (relative to the ALS gene). CONCLUSION: We confirm the first case of evolution of resistance to four herbicide sites of action (PSII, ALS and EPSPS inhibitors and synthetic auxins) in a single kochia population, and target-site-based mechanisms confer resistance to atrazine, glyphosate and chlorsulfuron.


Assuntos
Bassia scoparia/fisiologia , Resistência a Herbicidas , Herbicidas , Atrazina , Bassia scoparia/genética , DNA de Plantas/genética , Dicamba , Glicina/análogos & derivados , Kansas , Mutação , Plantas Daninhas , Sulfonamidas , Triazinas , Glifosato
7.
Plant Physiol ; 166(3): 1200-7, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25037215

RESUMO

Recent rapid evolution and spread of resistance to the most extensively used herbicide, glyphosate, is a major threat to global crop production. Genetic mechanisms by which weeds evolve resistance to herbicides largely determine the level of resistance and the rate of evolution of resistance. In a previous study, we determined that glyphosate resistance in Kochia scoparia is due to the amplification of the 5-Enolpyruvylshikimate-3-Phosphate Synthase (EPSPS) gene, the enzyme target of glyphosate. Here, we investigated the genomic organization of the amplified EPSPS copies using fluorescence in situ hybridization (FISH) and extended DNA fiber (Fiber FISH) on K. scoparia chromosomes. In both glyphosate-resistant K. scoparia populations tested (GR1 and GR2), FISH results displayed a single and prominent hybridization site of the EPSPS gene localized on the distal end of one pair of homologous metaphase chromosomes compared with a faint hybridization site in glyphosate-susceptible samples (GS1 and GS2). Fiber FISH displayed 10 copies of the EPSPS gene (approximately 5 kb) arranged in tandem configuration approximately 40 to 70 kb apart, with one copy in an inverted orientation in GR2. In agreement with FISH results, segregation of EPSPS copies followed single-locus inheritance in GR1 population. This is the first report of tandem target gene amplification conferring field-evolved herbicide resistance in weed populations.


Assuntos
3-Fosfoshikimato 1-Carboxiviniltransferase/genética , Bassia scoparia/enzimologia , Glicina/análogos & derivados , Resistência a Herbicidas , Herbicidas/farmacologia , 3-Fosfoshikimato 1-Carboxiviniltransferase/metabolismo , Bassia scoparia/genética , Evolução Biológica , Mapeamento Cromossômico , Amplificação de Genes , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glicina/farmacologia , Hibridização in Situ Fluorescente , Modelos Biológicos , Glifosato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA