Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 277
Filtrar
1.
Adv Sci (Weinh) ; : e2308622, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39360593

RESUMO

Abnormalities of tracheal smooth muscle (SM) formation are associated with several clinical disorders including tracheal stenosis and tracheomalacia. However, the cellular and molecular mechanisms underlying tracheal SM formation remain poorly understood. Here, it is shown that the T-type calcium channel CACNA1H is a novel regulator of tracheal SM formation and contraction. Cacna1h in an ethylnitrosourea forward genetic screen for regulators of respiratory disease using the mouse as a model is identified. Cacna1h mutants exhibit tracheal stenosis, disorganized SM and compromised tracheal contraction. CACNA1H is essential to maintain actin polymerization, which is required for tracheal SM organization and tube formation. This process appears to be partially mediated through activation of the actin regulator RhoA, as pharmacological increase of RhoA activity ameliorates the Cacna1h-mutant trachea phenotypes. Analysis of human tracheal tissues indicates that a decrease in CACNA1H protein levels is associated with congenital tracheostenosis. These results provide insight into the role for the T-type calcium channel in cytoskeletal organization and SM formation during tracheal tube formation and suggest novel targets for congenital tracheostenosis intervention.

2.
Nat Commun ; 15(1): 8159, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39289341

RESUMO

Tissues undergo distinct morphogenetic processes to achieve similarly shaped structures. In the heart, cardiomyocytes in both the ventricle and atrium build internal structures for efficient contraction. Ventricular wall formation (trabeculation) is initiated by cardiomyocyte delamination. How cardiomyocytes build the atrial wall is poorly understood. Using longitudinal imaging in zebrafish, we found that at least 25% of the atrial cardiomyocytes elongate along the long axis of the heart. These cell shape changes result in cell intercalation and convergent thickening, leading to the formation of the internal muscle network. We tested factors important for ventricular trabeculation including Nrg/ErbB and Notch signaling and found no evidence for their role in atrial muscle network formation. Instead, our data suggest that atrial cardiomyocyte elongation is regulated by Yap, which has not been implicated in trabeculation. Altogether, these data indicate that distinct cellular and molecular mechanisms build the internal muscle structures in the atrium and ventricle.


Assuntos
Átrios do Coração , Ventrículos do Coração , Miócitos Cardíacos , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Átrios do Coração/metabolismo , Átrios do Coração/citologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/citologia , Ventrículos do Coração/metabolismo , Ventrículos do Coração/citologia , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Transdução de Sinais , Forma Celular , Animais Geneticamente Modificados , Regulação da Expressão Gênica no Desenvolvimento , Morfogênese , Receptores Notch/metabolismo
3.
Nat Cardiovasc Res ; 3(9): 1158-1176, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39271818

RESUMO

The innate immune response is triggered rapidly after injury and its spatiotemporal dynamics are critical for regeneration; however, many questions remain about its exact role. Here we show that MyD88, a key component of the innate immune response, controls not only the inflammatory but also the fibrotic response during zebrafish cardiac regeneration. We find in cryoinjured myd88-/- ventricles a significant reduction in neutrophil and macrophage numbers and the expansion of a collagen-rich endocardial population. Further analyses reveal compromised PI3K/AKT pathway activation in the myd88-/- endocardium and increased myofibroblasts and scarring. Notably, endothelial-specific overexpression of myd88 reverses these neutrophil, fibrotic and scarring phenotypes. Mechanistically, we identify the endocardial-derived chemokine gene cxcl18b as a target of the MyD88 signaling pathway, and using loss-of-function and gain-of-function tools, we show that it controls neutrophil recruitment. Altogether, these findings shed light on the pivotal role of MyD88 in modulating inflammation and fibrosis during tissue regeneration.


Assuntos
Fibrose , Imunidade Inata , Fator 88 de Diferenciação Mieloide , Regeneração , Transdução de Sinais , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Animais Geneticamente Modificados , Quimiocinas CXC/genética , Quimiocinas CXC/metabolismo , Endocárdio/metabolismo , Endocárdio/patologia , Endocárdio/imunologia , Coração/fisiopatologia , Imunidade Inata/genética , Macrófagos/metabolismo , Macrófagos/imunologia , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Neutrófilos/imunologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regeneração/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
4.
Nat Commun ; 15(1): 7589, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39217144

RESUMO

The contribution of endocardial cells (EdCs) to the hematopoietic lineages has been strongly debated. Here, we provide evidence that in zebrafish, the endocardium gives rise to and maintains a stable population of hematopoietic cells. Using single-cell sequencing, we identify an endocardial subpopulation expressing enriched levels of hematopoietic-promoting genes. High-resolution microscopy and photoconversion tracing experiments uncover hematopoietic cells, mainly hematopoietic stem and progenitor cells (HSPCs)/megakaryocyte-erythroid precursors (MEPs), derived from EdCs as well as the dorsal aorta stably attached to the endocardium. Emergence of HSPCs/MEPs in hearts cultured ex vivo without external hematopoietic sources, as well as longitudinal imaging of the beating heart using light sheet microscopy, support endocardial contribution to hematopoiesis. Maintenance of these hematopoietic cells depends on the adhesion factors Integrin α4 and Vcam1 but is at least partly independent of cardiac trabeculation or shear stress. Finally, blocking primitive erythropoiesis increases cardiac-residing hematopoietic cells, suggesting that the endocardium is a hematopoietic reservoir. Altogether, these studies uncover the endocardium as a resident tissue for HSPCs/MEPs and a de novo source of hematopoietic cells.


Assuntos
Endocárdio , Células-Tronco Hematopoéticas , Peixe-Zebra , Animais , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Endocárdio/citologia , Endocárdio/metabolismo , Hematopoese/fisiologia , Coração/fisiologia , Molécula 1 de Adesão de Célula Vascular/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Análise de Célula Única , Linhagem da Célula , Eritropoese/fisiologia , Animais Geneticamente Modificados
5.
Development ; 151(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38984541

RESUMO

The cardiac extracellular matrix (cECM) is fundamental for organ morphogenesis and maturation, during which time it undergoes remodeling, yet little is known about whether mechanical forces generated by the heartbeat regulate this remodeling process. Using zebrafish as a model and focusing on stages when cardiac valves and trabeculae form, we found that altering cardiac contraction impairs cECM remodeling. Longitudinal volumetric quantifications in wild-type animals revealed region-specific dynamics: cECM volume decreases in the atrium but not in the ventricle or atrioventricular canal. Reducing cardiac contraction resulted in opposite effects on the ventricular and atrial ECM, whereas increasing the heart rate affected the ventricular ECM but had no effect on the atrial ECM, together indicating that mechanical forces regulate the cECM in a chamber-specific manner. Among the ECM remodelers highly expressed during cardiac morphogenesis, we found one that was upregulated in non-contractile hearts, namely tissue inhibitor of matrix metalloproteinase 2 (timp2). Loss- and gain-of-function analyses of timp2 revealed its crucial role in cECM remodeling. Altogether, our results indicate that mechanical forces control cECM remodeling in part through timp2 downregulation.


Assuntos
Matriz Extracelular , Coração , Inibidor Tecidual de Metaloproteinase-2 , Peixe-Zebra , Animais , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Matriz Extracelular/metabolismo , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Inibidor Tecidual de Metaloproteinase-2/genética , Coração/embriologia , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Contração Miocárdica/fisiologia , Miocárdio/metabolismo , Morfogênese , Átrios do Coração/embriologia , Átrios do Coração/metabolismo , Fenômenos Biomecânicos , Regulação da Expressão Gênica no Desenvolvimento , Ventrículos do Coração/metabolismo , Ventrículos do Coração/embriologia
6.
Development ; 151(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38847494

RESUMO

Visualization of protein dynamics is a crucial step in understanding cellular processes. Chromobodies, fluorescently labelled single-domain antibodies, have emerged as versatile probes for live cell imaging of endogenous proteins. However, how these chromobodies behave in vivo and how accurately they monitor tissue changes remain poorly explored. Here, we generated an endothelial-specific ß-catenin chromobody-derived probe and analyzed its expression pattern during cardiovascular development in zebrafish. Using high-resolution confocal imaging, we show that the chromobody signal correlates with the localization of ß-catenin in the nucleus and at cell-cell junctions, and thereby can be used to assess endothelial maturation. Loss of Cadherin 5 strongly affects the localization of the chromobody at the cell membrane, confirming the cadherin-based adherens junction role of ß-catenin. Furthermore, using a genetic model to block blood flow, we observed that cell junctions are compromised in most endothelial cells but not in the endocardium, highlighting the heterogeneous response of the endothelium to the lack of blood flow. Overall, our data further expand the use of chromobodies for in vivo applications and illustrate their potential to monitor tissue morphogenesis at high resolution.


Assuntos
Caderinas , Morfogênese , Proteínas de Peixe-Zebra , Peixe-Zebra , beta Catenina , Animais , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , beta Catenina/metabolismo , Caderinas/metabolismo , Caderinas/genética , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Junções Aderentes/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Endotélio Vascular/metabolismo , Endotélio Vascular/citologia , Antígenos CD
7.
Sci Adv ; 10(20): eadl0633, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38748804

RESUMO

Biomechanical forces, and their molecular transducers, including key mechanosensitive transcription factor genes, such as KLF2, are required for cardiac valve morphogenesis. However, klf2 mutants fail to completely recapitulate the valveless phenotype observed under no-flow conditions. Here, we identify the transcription factor EGR3 as a conserved biomechanical force transducer critical for cardiac valve formation. We first show that egr3 null zebrafish display a complete and highly penetrant loss of valve leaflets, leading to severe blood regurgitation. Using tissue-specific loss- and gain-of-function tools, we find that during cardiac valve formation, Egr3 functions cell-autonomously in endothelial cells, and identify one of its effectors, the nuclear receptor Nr4a2b. We further find that mechanical forces up-regulate egr3/EGR3 expression in the developing zebrafish heart and in porcine valvular endothelial cells, as well as during human aortic valve remodeling. Altogether, these findings reveal that EGR3 is necessary to transduce the biomechanical cues required for zebrafish cardiac valve morphogenesis, and potentially for pathological aortic valve remodeling in humans.


Assuntos
Proteína 3 de Resposta de Crescimento Precoce , Valvas Cardíacas , Morfogênese , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Valvas Cardíacas/metabolismo , Valvas Cardíacas/embriologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Morfogênese/genética , Humanos , Proteína 3 de Resposta de Crescimento Precoce/metabolismo , Proteína 3 de Resposta de Crescimento Precoce/genética , Regulação da Expressão Gênica no Desenvolvimento , Células Endoteliais/metabolismo , Mecanotransdução Celular , Suínos
8.
bioRxiv ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38559277

RESUMO

Despite numerous advances in our understanding of zebrafish cardiac regeneration, an aspect that remains less studied is how regenerating cardiomyocytes invade, and eventually replace, the collagen-containing fibrotic tissue following injury. Here, we provide an in-depth analysis of the process of cardiomyocyte invasion using live-imaging and histological approaches. We observed close interactions between protruding cardiomyocytes and macrophages at the wound border zone, and macrophage-deficient irf8 mutant zebrafish exhibited defects in extracellular matrix (ECM) remodeling and cardiomyocyte protrusion into the injured area. Using a resident macrophage ablation model, we show that defects in ECM remodeling at the border zone and subsequent cardiomyocyte protrusion can be partly attributed to a population of resident macrophages. Single-cell RNA-sequencing analysis of cells at the wound border revealed a population of cardiomyocytes and macrophages with fibroblast-like gene expression signatures, including the expression of genes encoding ECM structural proteins and ECM-remodeling proteins. The expression of mmp14b , which encodes a membrane-anchored matrix metalloproteinase, was restricted to cells in the border zone, including cardiomyocytes, macrophages, fibroblasts, and endocardial/endothelial cells. Genetic deletion of mmp14b led to a decrease in 1) macrophage recruitment to the border zone, 2) collagen degradation at the border zone, and 3) subsequent cardiomyocyte invasion. Furthermore, cardiomyocyte-specific overexpression of mmp14b was sufficient to enhance cardiomyocyte invasion into the injured tissue and along the apical surface of the wound. Altogether, our data shed important insights into the process of cardiomyocyte invasion of the collagen-containing injured tissue during cardiac regeneration. They further suggest that cardiomyocytes and resident macrophages contribute to ECM remodeling at the border zone to promote cardiomyocyte replenishment of the fibrotic injured tissue.

9.
Nat Commun ; 15(1): 3637, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684665

RESUMO

In contrast to adult mammals, adult zebrafish can fully regenerate injured cardiac tissue, and this regeneration process requires an adequate and tightly controlled immune response. However, which components of the immune response are required during regeneration is unclear. Here, we report positive roles for the antigen presentation-adaptive immunity axis during zebrafish cardiac regeneration. We find that following the initial innate immune response, activated endocardial cells (EdCs), as well as immune cells, start expressing antigen presentation genes. We also observe that T helper cells, a.k.a. Cd4+ T cells, lie in close physical proximity to these antigen-presenting EdCs. We targeted Major Histocompatibility Complex (MHC) class II antigen presentation by generating cd74a; cd74b mutants, which display a defective immune response. In these mutants, Cd4+ T cells and activated EdCs fail to efficiently populate the injured tissue and EdC proliferation is significantly decreased. cd74a; cd74b mutants exhibit additional defects in cardiac regeneration including reduced cardiomyocyte dedifferentiation and proliferation. Notably, Cd74 also becomes activated in neonatal mouse EdCs following cardiac injury. Altogether, these findings point to positive roles for antigen presentation during cardiac regeneration, potentially involving interactions between activated EdCs, classical antigen-presenting cells, and Cd4+ T cells.


Assuntos
Apresentação de Antígeno , Traumatismos Cardíacos , Antígenos de Histocompatibilidade Classe II , Regeneração , Peixe-Zebra , Animais , Regeneração/imunologia , Apresentação de Antígeno/imunologia , Traumatismos Cardíacos/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe II/genética , Camundongos , Linfócitos T CD4-Positivos/imunologia , Miócitos Cardíacos/imunologia , Miócitos Cardíacos/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Antígenos de Diferenciação de Linfócitos B/metabolismo , Antígenos de Diferenciação de Linfócitos B/genética , Proliferação de Células , Imunidade Inata , Coração/fisiopatologia , Coração/fisiologia , Mutação , Imunidade Adaptativa , Animais Geneticamente Modificados
10.
Proc Natl Acad Sci U S A ; 121(3): e2309842121, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38194447

RESUMO

Cardiac contractions and hemodynamic forces are essential for organ development and homeostasis. Control over cardiac contractions can be achieved pharmacologically or optogenetically. However, these approaches lack specificity or require direct access to the heart. Here, we compare two genetic approaches to control cardiac contractions by modulating the levels of the essential sarcomeric protein Tnnt2a in zebrafish. We first recombine a newly generated tnnt2a floxed allele using multiple lines expressing Cre under the control of cardiomyocyte-specific promoters, and show that it does not recapitulate the tnnt2a/silent heart mutant phenotype in embryos. We show that this lack of early cardiac contraction defects is due, at least in part, to the long half-life of tnnt2a mRNA, which masks the gene deletion effects until the early larval stages. We then generate an endogenous Tnnt2a-eGFP fusion line that we use together with the zGRAD system to efficiently degrade Tnnt2a in all cardiomyocytes. Using single-cell transcriptomics, we find that Tnnt2a depletion leads to cardiac phenotypes similar to those observed in tnnt2a mutants, with a loss of blood and pericardial flow-dependent cell types. Furthermore, we achieve conditional degradation of Tnnt2a-eGFP by splitting the zGRAD protein into two fragments that, when combined with the cpFRB2-FKBP system, can be reassembled upon rapamycin treatment. Thus, this Tnnt2a degradation line enables non-invasive control of cardiac contractions with high spatial and temporal specificity and will help further understand how they shape organ development and homeostasis.


Assuntos
Perciformes , Peixe-Zebra , Animais , Peixe-Zebra/genética , Degrons , Miócitos Cardíacos , Alelos
11.
PLoS Genet ; 19(6): e1010806, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37384903

RESUMO

Genetic robustness can be achieved via several mechanisms including transcriptional adaptation (TA), a sequence similarity-driven process whereby mutant mRNA degradation products modulate, directly or indirectly, the expression of so-called adapting genes. To identify the sequences required for this process, we utilized a transgenic approach in Caenorhabditis elegans, combining an overexpression construct for a mutant gene (act-5) and a fluorescent reporter for the corresponding adapting gene (act-3). Analyzing a series of modifications for each construct, we identified, in the 5' regulatory region of the act-3 locus, a 25-base pair (bp) element which exhibits 60% identity with a sequence in the act-5 mRNA and which, in the context of a minimal promoter, is sufficient to induce ectopic expression of the fluorescent reporter. The 25 nucleotide (nt) element in the act-5 mRNA lies between the premature termination codon (PTC) and the next exon/exon junction, suggesting the importance of this region of the mutant mRNA for TA. Additionally, we found that single-stranded RNA injections of this 25 nt element from act-5 into the intestine of wild-type larvae led to higher levels of adapting gene (act-3) mRNA. Different models have been proposed to underlie the modulation of gene expression during TA including chromatin remodeling, the inhibition of antisense RNAs, the release of transcriptional pausing, and the suppression of premature transcription termination, and our data clearly show the importance of the regulatory region of the adapting gene in this particular act-5/act-3 TA model. Our findings also suggest that RNA fragments can modulate the expression of loci exhibiting limited sequence similarity, possibly a critical observation when designing RNA based therapies.


Assuntos
Aclimatação , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , RNA , RNA Mensageiro/genética , Nucleotídeos
12.
Elife ; 122023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37097004

RESUMO

Multiple factors are required to form functional lymphatic vessels. Here, we uncover an essential role for the secreted protein Svep1 and the transmembrane receptor Tie1 during the development of subpopulations of the zebrafish facial lymphatic network. This specific aspect of the facial network forms independently of Vascular endothelial growth factor C (Vegfc) signalling, which otherwise is the most prominent signalling axis in all other lymphatic beds. Additionally, we find that multiple specific and newly uncovered phenotypic hallmarks of svep1 mutants are also present in tie1, but not in tie2 or vegfc mutants. These phenotypes are observed in the lymphatic vasculature of both head and trunk, as well as in the development of the dorsal longitudinal anastomotic vessel under reduced flow conditions. Therefore, our study demonstrates an important function for Tie1 signalling during lymphangiogenesis as well as blood vessel development in zebrafish. Furthermore, we show genetic interaction between svep1 and tie1 in vivo, during early steps of lymphangiogenesis, and demonstrate that zebrafish as well as human Svep1/SVEP1 protein bind to the respective Tie1/TIE1 receptors in vitro. Since compound heterozygous mutations for SVEP1 and TIE2 have recently been reported in human glaucoma patients, our data have clinical relevance in demonstrating a role for SVEP1 in TIE signalling in an in vivo setting.


Assuntos
Vasos Linfáticos , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/genética , Fator C de Crescimento do Endotélio Vascular/genética , Fator C de Crescimento do Endotélio Vascular/metabolismo , Ligantes , Vasos Linfáticos/metabolismo , Linfangiogênese/genética , Receptor TIE-2/genética , Receptor TIE-2/metabolismo , Moléculas de Adesão Celular/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Receptor de TIE-1/genética , Receptor de TIE-1/metabolismo
13.
Dis Model Mech ; 16(5)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36974941

RESUMO

Didier Stainier is Director of the Department of Developmental Genetics at the Max Planck Institute for Heart and Lung Research in Bad Nauheim, Germany. He became acquainted with the zebrafish model as a PhD student in Walter Gilbert's lab at Harvard, which motivated him to champion the use of this powerful model organism to study heart development as a postdoctoral fellow with Mark Fishman at Massachusetts General Hospital. Although his scientific focus has expanded significantly since then, zebrafish modelling and heart development and regeneration remain key topics in his research. The developmental biology and zebrafish modelling communities have embraced him as an inspiring mentor and advocate for basic research. Jeroen Bakkers is a group leader at the Hubrecht Institute for Developmental Biology and Stem Cell Research and Professor of Molecular Cardiogenetics at the University Medical Center Utrecht, The Netherlands. Jeroen did hid PhD with Herman Spaink at Leiden University, The Netherlands. A short visit to Massachusetts Institute of Technology during his doctoral training introduced him to the zebrafish model, which he applied to his PhD project. Zebrafish development remained the focus of his career, including during his postdoctoral training in the lab of Matthias Hammerschmidt at the Max Planck Institute of Immunology and Epigenetics in Freiburg and in his own lab at the Hubrecht Institute, where his group uses this powerful model organism to investigate cardiac development, disease and regeneration. Jeroen and Didier met up at a recent conference to talk about their shared interest in cardiac regeneration, a zebrafish mutant with a curious name and Didier's commitment to mentorship.


Assuntos
Remoção , Peixe-Zebra , Animais , Coração
14.
Dev Cell ; 58(3): 224-238.e7, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36693371

RESUMO

Endothelial cells (ECs) line blood vessels and serve as a niche for hematopoietic stem and progenitor cells (HSPCs). Recent data point to tissue-specific EC specialization as well as heterogeneity; however, it remains unclear how ECs acquire these properties. Here, by combining live-imaging-based lineage-tracing and single-cell transcriptomics in zebrafish embryos, we identify an unexpected origin for part of the vascular HSPC niche. We find that islet1 (isl1)-expressing cells are the progenitors of the venous ECs that constitute the majority of the HSPC niche. These isl1-expressing cells surprisingly originate from the endoderm and differentiate into ECs in a process dependent on Bmp-Smad signaling and subsequently requiring npas4l (cloche) function. Single-cell RNA sequencing analyses show that isl1-derived ECs express a set of genes that reflect their distinct origin. This study demonstrates that endothelial specialization in the HSPC niche is determined at least in part by the origin of the ECs.


Assuntos
Células Endoteliais , Peixe-Zebra , Animais , Endoderma , Células-Tronco Hematopoéticas/fisiologia , Endotélio
15.
Elife ; 122023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36648336

RESUMO

The nucleoporin (NUP) ELYS, encoded by AHCTF1, is a large multifunctional protein with essential roles in nuclear pore assembly and mitosis. Using both larval and adult zebrafish models of hepatocellular carcinoma (HCC), in which the expression of an inducible mutant kras transgene (krasG12V) drives hepatocyte-specific hyperplasia and liver enlargement, we show that reducing ahctf1 gene dosage by 50% markedly decreases liver volume, while non-hyperplastic tissues are unaffected. We demonstrate that in the context of cancer, ahctf1 heterozygosity impairs nuclear pore formation, mitotic spindle assembly, and chromosome segregation, leading to DNA damage and activation of a Tp53-dependent transcriptional programme that induces cell death and cell cycle arrest. Heterozygous expression of both ahctf1 and ranbp2 (encoding a second nucleoporin), or treatment of heterozygous ahctf1 larvae with the nucleocytoplasmic transport inhibitor, Selinexor, completely blocks krasG12V-driven hepatocyte hyperplasia. Gene expression analysis of patient samples in the liver hepatocellular carcinoma (LIHC) dataset in The Cancer Genome Atlas shows that high expression of one or more of the transcripts encoding the 10 components of the NUP107-160 subcomplex, which includes AHCTF1, is positively correlated with worse overall survival. These results provide a strong and feasible rationale for the development of novel cancer therapeutics that target ELYS function and suggest potential avenues for effective combinatorial treatments.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Hiperplasia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
16.
Nat Commun ; 14(1): 214, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639367

RESUMO

Cardiac valves ensure unidirectional blood flow through the heart, and altering their function can result in heart failure. Flow sensing via wall shear stress and wall stretching through the action of mechanosensors can modulate cardiac valve formation. However, the identity and precise role of the key mechanosensors and their effectors remain mostly unknown. Here, we genetically dissect the role of Pkd1a and other mechanosensors in atrioventricular (AV) valve formation in zebrafish and identify a role for several pkd and piezo gene family members in this process. We show that Pkd1a, together with Pkd2, Pkd1l1, and Piezo2a, promotes AV valve elongation and cardiac morphogenesis. Mechanistically, Pkd1a, Pkd2, and Pkd1l1 all repress the expression of klf2a and klf2b, transcription factor genes implicated in AV valve development. Furthermore, we find that the calcium-dependent protein kinase Camk2g is required downstream of Pkd function to repress klf2a expression. Altogether, these data identify, and dissect the role of, several mechanosensors required for AV valve formation, thereby broadening our understanding of cardiac valvulogenesis.


Assuntos
Valvas Cardíacas , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Animais Geneticamente Modificados , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Organogênese
17.
Dis Model Mech ; 16(5)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36172839

RESUMO

The epicardium, the outermost layer of the heart, is an important regulator of cardiac regeneration. However, a detailed understanding of the crosstalk between the epicardium and myocardium during development requires further investigation. Here, we generated three models of epicardial impairment in zebrafish by mutating the transcription factor genes tcf21 and wt1a, and ablating tcf21+ epicardial cells. Notably, all three epicardial impairment models exhibited smaller ventricles. We identified the initial cause of this phenotype as defective cardiomyocyte growth, resulting in reduced cell surface and volume. This failure of cardiomyocyte growth was followed by decreased proliferation and increased abluminal extrusion. By temporally manipulating its ablation, we show that the epicardium is required to support cardiomyocyte growth mainly during early cardiac morphogenesis. By transcriptomic profiling of sorted epicardial cells, we identified reduced expression of FGF and VEGF ligand genes in tcf21-/- hearts, and pharmacological inhibition of these signaling pathways in wild type partially recapitulated the ventricular growth defects. Taken together, these data reveal distinct roles of the epicardium during cardiac morphogenesis and signaling pathways underlying epicardial-myocardial crosstalk.


Assuntos
Miócitos Cardíacos , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Miócitos Cardíacos/metabolismo , Ligantes , Fator A de Crescimento do Endotélio Vascular/metabolismo , Pericárdio/metabolismo , Organogênese/genética , Coração/fisiologia , Miocárdio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas WT1/genética , Proteínas WT1/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
18.
Proc Natl Acad Sci U S A ; 119(48): e2209231119, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36417434

RESUMO

The shaping of bone structures relies on various cell types and signaling pathways. Here, we use the zebrafish bifurcating fin rays during regeneration to investigate bone patterning. We found that the regenerating fin rays form via two mineralization fronts that undergo an osteoblast-dependent fusion/stitching until the branchpoint, and that bifurcation is not simply the splitting of one unit into two. We identified tartrate-resistant acid phosphatase-positive osteolytic tubular structures at the branchpoints, hereafter named osteolytic tubules (OLTs). Chemical inhibition of their bone-resorbing activity strongly impairs ray bifurcation, indicating that OLTs counteract the stitching process. Furthermore, by testing different osteoactive compounds, we show that the position of the branchpoint depends on the balance between bone mineralization and resorption activities. Overall, these findings provide a unique perspective on fin ray formation and bifurcation, and reveal a key role for OLTs in defining the proximo-distal position of the branchpoint.


Assuntos
Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Osteoblastos/metabolismo , Transdução de Sinais , Osso e Ossos/metabolismo
19.
Sci Adv ; 8(47): eabj2029, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36427314

RESUMO

Transgenerational epigenetic inheritance (TEI) is mostly discussed in the context of physiological or environmental factors. Here, we show intergenerational and transgenerational inheritance of transcriptional adaptation (TA), a process whereby mutant messenger RNA (mRNA) degradation affects gene expression, in nematodes and zebrafish. Wild-type offspring of animals heterozygous for mRNA-destabilizing alleles display increased expression of adapting genes. Notably, offspring of animals heterozygous for nontranscribing alleles do not display this response. Germline-specific mutations are sufficient to induce TA in wild-type offspring, indicating that, at least for some genes, mutations in somatic tissues are not necessary for this process. Microinjecting total RNA from germ cells of TA-displaying heterozygous zebrafish can trigger TA in wild-type embryos and in their progeny, suggesting a model whereby mutant mRNAs in the germline trigger a TA response that can be epigenetically inherited. In sum, this previously unidentified mode of TEI reveals a means by which parental mutations can modulate the offspring's transcriptome.


Assuntos
Aclimatação , Peixe-Zebra , Animais , Peixe-Zebra/genética , Heterozigoto , Mutação , RNA Mensageiro/genética
20.
Sci Adv ; 8(35): eabn2082, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36044573

RESUMO

Endothelial specification is a key event during embryogenesis; however, when, and how, endothelial cells separate from other lineages is poorly understood. In zebrafish, Npas4l is indispensable for endothelial specification by inducing the expression of the transcription factor genes etsrp, tal1, and lmo2. We generated a knock-in reporter in zebrafish npas4l to visualize endothelial progenitors and their derivatives in wild-type and mutant embryos. Unexpectedly, we find that in npas4l mutants, npas4l reporter-expressing cells contribute to the pronephron tubules. Single-cell transcriptomics and live imaging of the early lateral plate mesoderm in wild-type embryos indeed reveals coexpression of endothelial and pronephron markers, a finding confirmed by creERT2-based lineage tracing. Increased contribution of npas4l reporter-expressing cells to pronephron tubules is also observed in tal1 and lmo2 mutants and is reversed in npas4l mutants injected with tal1 mRNA. Together, these data reveal that Npas4l/Tal1/Lmo2 regulate the fate decision between the endothelial and pronephron lineages.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA