Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biophys J ; 105(11): 2577-85, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24314088

RESUMO

Standard hydrogen bonds are of great importance for protein structure and function. Ionic hydrogen bonds often are significantly stronger than standard hydrogen bonds and exhibit unique properties, but their role in proteins is not well understood. We report that hydrogen/deuterium exchange causes a redshift in the visible absorbance spectrum of photoactive yellow protein (PYP). We expand the range of interpretable isotope effects by assigning this spectral isotope effect (SIE) to a functionally important hydrogen bond at the active site of PYP. The inverted sign and extent of this SIE is explained by the ionic nature and strength of this hydrogen bond. These results show the relevance of ionic hydrogen bonding for protein active sites, and reveal that the inverted SIE is a novel, to our knowledge, tool to probe ionic hydrogen bonds. Our results support a classification of hydrogen bonds that distinguishes the properties of ionic hydrogen bonds from those of both standard and low barrier hydrogen bonds, and show how this classification helps resolve a recent debate regarding active site hydrogen bonding in PYP.


Assuntos
Proteínas de Bactérias/química , Fotorreceptores Microbianos/química , Sequência de Aminoácidos , Ligação de Hidrogênio , Isótopos/química , Dados de Sequência Molecular , Estrutura Terciária de Proteína
2.
J Am Chem Soc ; 131(47): 17443-51, 2009 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-19891493

RESUMO

Idiomarina loihiensis is a heterotrophic deep sea bacterium with no known photobiology. We show that light suppresses biofilm formation in this organism. The genome of I. loihiensis encodes a single photoreceptor protein: a homologue of photoactive yellow protein (PYP), a blue light receptor with photochemistry based on trans to cis isomerization of its p-coumaric acid (pCA) chromophore. The addition of trans-locked pCA to I. loihiensis increases biofilm formation, whereas cis-locked pCA decreases it. This demonstrates that the PYP homologue regulates biofilm formation in I. loihiensis, revealing an unexpected functional versatility in the PYP family of photoreceptors. These results imply that I. loihiensis thrives not only in the deep sea but also near the water surface and provide an example of genome-based discovery of photophysiological responses. The use of locked pCA analogs is a novel and generally applicable pharmacochemical tool to study the in vivo role of PYPs irrespective of genetic accessibility. Heterologously produced PYP from I. loihiensis (Il PYP) absorbs maximally at 446 nm and has a pCA pK(a) of 3.4. Photoexcitation triggers the formation of a pB signaling state that decays with a time constant of 0.3 s. FTIR difference signals at 1726 and 1497 cm(-1) reveal that active-site proton transfer during the photocycle is conserved in Il PYP. It has been proposed that a correlation exists between the lifetime of a photoreceptor signaling state and the time scale of the biological response that it regulates. The data presented here provide an example of a protein with a rapid photocycle that regulates a slow biological response.


Assuntos
Alteromonadaceae/fisiologia , Proteínas de Bactérias/fisiologia , Biofilmes , Fotorreceptores Microbianos/fisiologia , Microbiologia da Água , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência de Bases , Clonagem Molecular , Primers do DNA , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/genética , Água do Mar/microbiologia , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA