Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Cell Endocrinol ; 583: 112128, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38142853

RESUMO

Pituitary gland function is regulated by the activity of various transcription factors that control cell fate decisions leading to cellular differentiation and hormone production. FOXO1 is necessary for normal somatotrope differentiation and function. Recent in vivo data implicate FOXO1 in the regulation of genes important for somatotrope differentiation including Gh1, Neurod4, and Pou1f1. In the current study, the somatotrope-like cell line GH3 was treated with a FOXO1 inhibitor, resulting in significant reduction in Neurod4 and Gh1 expression. Consistent with these findings, CRISPR/Cas9-mediated deletion of Foxo1 in GH3 cells significantly reduced expression of Gh1 and Neurod4. Chromatin immunoprecipitation sequencing identifies novel FOXO1 binding sites associated with the Neurod4, Gh1, and Pou1f1 genes. The FOXO1 binding site in the Neurod4 gene exhibits enhancer activity in somatotrope-like cells but not in gonadotrope-like cells. These data strongly suggest FOXO1 directly contributes to the transcriptional control of genes important for somatotrope differentiation.


Assuntos
Gonadotrofos , Hipófise , Hipófise/metabolismo , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Regulação da Expressão Gênica , Diferenciação Celular/genética , Fatores de Transcrição/metabolismo , Gonadotrofos/metabolismo
2.
Endocrinology ; 163(2)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34971379

RESUMO

Understanding the molecular mechanisms underlying pituitary organogenesis and function is essential for improving therapeutics and molecular diagnoses for hypopituitarism. We previously found that deletion of the forkhead factor, Foxo1, in the pituitary gland early in development delays somatotrope differentiation. While these mice grow normally, they have reduced growth hormone expression and free serum insulin-like growth factor-1 (IGF1) levels, suggesting a defect in somatotrope function. FOXO factors show functional redundancy in other tissues, so we deleted both Foxo1 and its closely related family member, Foxo3, from the primordial pituitary. We find that this results in a significant reduction in growth. Consistent with this, male and female mice in which both genes have been deleted in the pituitary gland (dKO) exhibit reduced pituitary growth hormone expression and serum IGF1 levels. Expression of the somatotrope differentiation factor, Neurod4, is reduced in these mice. This suggests a mechanism underlying proper somatotrope function is the regulation of Neurod4 expression by FOXO factors. Additionally, dKO mice have reduced Lhb expression and females also have reduced Fshb and Prl expression. These studies reveal FOXO transcription factors as important regulators of pituitary gland function.


Assuntos
Fatores de Transcrição Forkhead/fisiologia , Somatotrofos/fisiologia , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Feminino , Proteína Forkhead Box O1/deficiência , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/fisiologia , Proteína Forkhead Box O3/deficiência , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/fisiologia , Expressão Gênica , Hormônio do Crescimento/genética , Fator de Crescimento Insulin-Like I/análise , Masculino , Camundongos , Camundongos Knockout , Hipófise/química , Hipófise/fisiologia , RNA Mensageiro/análise , Somatotrofos/química
3.
Trends Endocrinol Metab ; 29(7): 510-523, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29759686

RESUMO

Pituitary somatotropes secrete growth hormone (GH), which is essential for normal growth and metabolism. Somatotrope defects result in GH deficiency (GHD), leading to short stature in childhood and increased cardiovascular morbidity and mortality in adulthood. Current hormone replacement therapies fail to recapitulate normal pulsatile GH secretion. Stem cell therapies could overcome this problem but are dependent on a thorough understanding of somatotrope differentiation. Although several transcription factors, signaling pathways, and hormones that regulate this process have been identified, the mechanisms of action are not well understood. The purpose of this review is to highlight the known players in somatotrope differentiation while emphasizing the need to better understand these pathways to serve patients with GHD.


Assuntos
Hipófise/citologia , Hipófise/metabolismo , Somatotrofos/metabolismo , Animais , Diferenciação Celular/fisiologia , Hormônio do Crescimento/metabolismo , Humanos
4.
Endocrinology ; 159(8): 2891-2904, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29796621

RESUMO

The process by which the somatotrope lineage emerges in the developing pituitary is regulated by the activity of specific signaling and transcription factors expressed during development. We set out to understand the contribution of FOXO1 to that process by using a mouse model in which FOXO1 is prematurely expressed in the pituitary primordium. Expression of FOXO1 in the oral ectoderm as early as embryonic day (e)9.5 resulted in pituitary gland hypoplasia and reduced expression of anterior lobe hormone transcripts at e18.5. Of note, the relative numbers of somatotropes and thyrotropes were also decreased at e18.5. LHX3 and PITX2, markers of pituitary identity, were present in a reduced number of cells during the formation of the Rathke pouch. Thus, premature expression of FOXO1 may affect adoption of pituitary identity during differentiation. Our results demonstrate that the timing of FOXO1 activation affects its role in pituitary gland organogenesis and somatotrope differentiation.


Assuntos
Proteína Forkhead Box O1/genética , Regulação da Expressão Gênica no Desenvolvimento , Organogênese/genética , Adeno-Hipófise/embriologia , Animais , Diferenciação Celular/genética , Linhagem da Célula , Ectoderma/embriologia , Ectoderma/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas com Homeodomínio LIM/metabolismo , Camundongos , Tamanho do Órgão , Hipófise/citologia , Hipófise/embriologia , Hipófise/metabolismo , Hipófise/patologia , Adeno-Hipófise/citologia , Adeno-Hipófise/metabolismo , Adeno-Hipófise/patologia , Somatotrofos/citologia , Somatotrofos/metabolismo , Tireotrofos/citologia , Tireotrofos/metabolismo , Fatores de Tempo , Fatores de Transcrição/metabolismo , Proteína Homeobox PITX2
6.
Endocrinology ; 157(11): 4351-4363, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27631552

RESUMO

The etiology for half of congenital hypopituitarism cases is unknown. Our long-term goal is to expand the molecular diagnoses for congenital hypopituitarism by identifying genes that contribute to this condition. We have previously shown that the forkhead box transcription factor, FOXO1, is present in approximately half of somatotropes at embryonic day (e) 18.5, suggesting it may have a role in somatotrope differentiation or function. To elucidate the role of FOXO1 in somatotrope differentiation and function, Foxo1 was conditionally deleted from the anterior pituitary (Foxo1Δpit). Uncommitted progenitor cells are maintained and able to commit to the somatotrope lineage normally based on the expression patterns of Sox2, a marker of uncommitted pituitary progenitors, and Pou1f1 (also known as Pit1), which marks committed progenitors. Interestingly, Foxo1Δpit embryonic mice exhibit delayed somatotrope differentiation as evidenced by an almost complete absence of GH immunoreactivity at e16.5 and reduced expression of Gh at e18.5 and postnatal day (P) 3. Consistent with this conclusion, expression of GHRH receptor, a marker of terminally differentiated somatotropes, is significantly reduced at e18.5 and P3 in the absence of FOXO1. The mechanism of FOXO1 regulation of somatotrope differentiation may involve the basic helix-loop-helix transcription factor, Neurod4, which has been implicated in somatotrope differentiation and is significantly reduced in Foxo1Δpit mice. Foxo1Δpit mice do not exhibit growth defects, and at P21 their pituitary glands exhibit a normal distribution of somatotropes. These studies demonstrate that FOXO1 is important for initial somatotrope specification embryonically but is dispensable for postnatal somatotrope expansion and growth.


Assuntos
Proteína Forkhead Box O1/metabolismo , Somatotrofos/citologia , Somatotrofos/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Embrião de Mamíferos/metabolismo , Éxons/genética , Feminino , Hormônio Foliculoestimulante/genética , Hormônio Foliculoestimulante/metabolismo , Proteína Forkhead Box O1/genética , Imuno-Histoquímica , Hibridização In Situ , Hormônio Luteinizante/genética , Hormônio Luteinizante/metabolismo , Camundongos , Hipófise/citologia , Hipófise/metabolismo , Gravidez , Células-Tronco/citologia , Células-Tronco/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA