Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Horm Behav ; 161: 105501, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38368844

RESUMO

Long-term use of anabolic androgenic steroids (AAS) in supratherapeutic doses is associated with severe adverse effects, including physical, mental, and behavioral alterations. When used for recreational purposes several AAS are often combined, and in scientific studies of the physiological impact of AAS either a single compound or a cocktail of several steroids is often used. Because of this, steroid-specific effects have been difficult to define and are not fully elucidated. The present study used male Wistar rats to evaluate potential somatic and behavioral effects of three different AAS; the decanoate esters of nandrolone, testosterone, and trenbolone. The rats were exposed to 15 mg/kg of nandrolone decanoate, testosterone decanoate, or trenbolone decanoate every third day for 24 days. Body weight gain and organ weights (thymus, liver, kidney, testis, and heart) were measured together with the corticosterone plasma levels. Behavioral effects were studied in the novel object recognition-test (NOR-test) and the multivariate concentric square field-test (MCSF-test). The results conclude that nandrolone decanoate, but neither testosterone decanoate nor trenbolone decanoate, caused impaired recognition memory in the NOR-test, indicating an altered cognitive function. The behavioral profile and stress hormone level of the rats were not affected by the AAS treatments. Furthermore, the study revealed diverse AAS-induced somatic effects i.e., reduced body weight development and changes in organ weights. Of the three AAS included in the study, nandrolone decanoate was identified to cause the most prominent impact on the male rat, as it affected body weight development, the weights of multiple organs, and caused an impaired memory function.


Assuntos
Anabolizantes , Transtornos da Memória , Nandrolona , Ratos Wistar , Testosterona , Animais , Masculino , Testosterona/sangue , Testosterona/análogos & derivados , Ratos , Nandrolona/análogos & derivados , Nandrolona/farmacologia , Anabolizantes/efeitos adversos , Anabolizantes/farmacologia , Transtornos da Memória/induzido quimicamente , Tamanho do Órgão/efeitos dos fármacos , Acetato de Trembolona/farmacologia , Decanoato de Nandrolona/farmacologia , Peso Corporal/efeitos dos fármacos , Corticosterona/sangue , Reconhecimento Psicológico/efeitos dos fármacos
2.
Behav Brain Res ; 455: 114678, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37739228

RESUMO

Anxiety disorders affect up to one third of the population. Caffeine, an adenosine receptor antagonist, is thought to have a dose-dependent effect on anxiety. We recently showed that a high dose of caffeine (50 mg/kg) differentially affected anxiety-like behavior in rats with high or low baseline anxiety-like behavior, replicating findings using relatively high doses in human patient samples. It is not known if low doses of caffeine have similar effects. The elevated plus maze (EPM) was used to categorize male Wistar rats (13 weeks of age) into groups of high or low anxiety-like behavior. Behavior was evaluated using the multivariate concentric square field (MCSF) test and the EPM after a low 10 mg/kg dose of caffeine. Multivariate data analysis demonstrated that caffeine decreased the differences between the high and low anxiety group, whereas the separation remained for the high and low control groups. For the caffeine treated rats, univariate statistics showed an increase in parameters regarding activity in the EPM and duration in the slope of the MCSF. Regarding risk-taking, shelter-seeking, and exploratory behavior, caffeine did not affect the groups differently. In conclusion, these results demonstrate increased activity in the caffeine-treated rats, together with a potentially anxiolytic effect and increased impulsivity that did not differ between the baseline anxiety groups. In contrast to high caffeine doses, a low dose does not generally affect rats with high anxiety at baseline differently than rats with low anxiety-like behavior. Further studies are warranted to fully elucidate the effects of caffeine in anxiety.


Assuntos
Ansiolíticos , Cafeína , Humanos , Ratos , Masculino , Animais , Cafeína/farmacologia , Ratos Wistar , Ansiedade/tratamento farmacológico , Ansiolíticos/farmacologia , Comportamento Exploratório , Comportamento Animal , Aprendizagem em Labirinto
3.
Pharmacol Biochem Behav ; 227-228: 173573, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37302662

RESUMO

Anxiety disorders are common psychiatric conditions with a partially elucidated neurobiology. Caffeine, an unspecific adenosine receptor antagonist, is a common psychostimulant with anxiogenic effects in sensitive individuals. High doses of caffeine produce anxiety-like behavior in rats but it is not known if this is specific for rats with high baseline anxiety-like behavior. Thus, the aim of this study was to investigate general behavior, risk-taking, and anxiety-like behavior, as well as mRNA expression (adenosine A2A and A1, dopamine D2, and, µ, κ, δ opioid, receptors, BDNF, c-fos, IGF-1) in amygdala, caudate putamen, frontal cortex, hippocampus, hypothalamus, after an acute dose of caffeine. Untreated rats were screened using the elevated plus maze (EPM), giving each rat a score on anxiety-like behavior based on their time spent in the open arms, and categorized into a high or low anxiety-like behavior group accordingly. Three weeks after categorization, the rats were treated with 50 mg/kg caffeine and their behavior profile was studied in the multivariate concentric square field (MCSF) test, and one week later in the EPM. qPCR was performed on selected genes and corticosterone plasma levels were measured using ELISA. The results demonstrated that the high anxiety-like behavior rats treated with caffeine spent less time in risk areas of the MCSF and resituated towards the sheltered areas, a behavior accompanied by lower mRNA expression of adenosine A2A receptors in caudate putamen and increased BDNF expression in hippocampus. These results support the hypothesis that caffeine affects individuals differently depending on their baseline anxiety-like behavior, possibly involving adenosine receptors. This highlights the importance of adenosine receptors as a possible drug target for anxiety disorders, although further research is needed to fully elucidate the neurobiological mechanisms of caffeine on anxiety disorders.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Cafeína , Ratos , Animais , Cafeína/farmacologia , Fator Neurotrófico Derivado do Encéfalo/genética , Receptores Opioides , Adenosina/farmacologia , Ansiedade/tratamento farmacológico , Receptores Purinérgicos P1/genética , RNA Mensageiro , Assunção de Riscos
4.
Curr Issues Mol Biol ; 44(10): 5000-5012, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36286055

RESUMO

Angiotensin IV (Ang IV), a metabolite of Angiotensin II, is a bioactive hexapeptide that inhibits the insulin-regulated aminopeptidase (IRAP). This transmembrane zinc metallopeptidase with many biological functions has in recent years emerged as a new pharmacological target. IRAP is expressed in a variety of tissues and can be found in high density in the hippocampus and neocortex, brain regions associated with cognition. Ang IV is known to improve memory tasks in experimental animals. One of the most potent IRAP inhibitors known today is the macrocyclic compound HA08 that is significantly more stable than the endogenous Ang IV. HA08 combines structural elements from Ang IV and the physiological substrates oxytocin and vasopressin, and binds to the catalytic site of IRAP. In the present study we evaluate whether HA08 can restore cell viability in rat primary cells submitted to hydrogen peroxide damage. After damaging the cells with hydrogen peroxide and subsequently treating them with HA08, the conceivable restoring effects of the IRAP inhibitor were assessed. The cellular viability was determined by measuring mitochondrial activity and lactate dehydrogenase (LDH) release. The mitochondrial activity was significantly higher in primary hippocampal cells, whereas the amount of LDH was unaffected. We conclude that the cell viability can be restored in this cell type by blocking IRAP with the potent macrocyclic inhibitor HA08, although the mechanism by which HA08 exerts its effects remains unclear.

5.
J Steroid Biochem Mol Biol ; 210: 105863, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33677017

RESUMO

The illicit use of anabolic androgenic steroids (AAS) among adolescents and young adults is a major concern due to the unknown and unpredictable impact of AAS on the developing brain and the consequences of this on mental health, cognitive function and behaviour. The present study aimed to investigate the effects of supra-physiological doses of four structurally different AAS (testosterone, nandrolone, stanozolol and trenbolone) on neurite development and cell viability using an in vitro model of immature primary rat cortical cell cultures. A high-throughput screening image-based approach, measuring the neurite length and number of neurons, was used for the analysis of neurite outgrowth. In addition, cell viability and expression of the Tubb3 gene (encoding the protein beta-III tubulin) were investigated. Testosterone, nandrolone, and trenbolone elicited adverse effects on neurite outgrowth as deduced from an observed reduced neurite length per neuron. Trenbolone was the only AAS that reduced the cell viability as indicated by a decreased number of neurons and declined mitochondrial function. Moreover, trenbolone downregulated the Tubb3 mRNA expression. The adverse impact on neurite development was neither inhibited nor supressed by the selective androgen receptor (AR) antagonist, flutamide, suggesting that the observed effects result from another mechanism or mechanisms of action that are operating apart from AR activation. The results demonstrate a possible AAS-induced detrimental effect on neuronal development and regenerative functions. An impact on these events, that are essential mechanisms for maintaining normal brain function, could possibly contribute to behavioural alterations seen in AAS users.


Assuntos
Anabolizantes/química , Anabolizantes/farmacologia , Córtex Cerebral/citologia , Crescimento Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Córtex Cerebral/embriologia , Relação Dose-Resposta a Droga , Feminino , Nandrolona/química , Nandrolona/farmacologia , Neurônios/metabolismo , Cultura Primária de Células , Ratos Wistar , Receptores Androgênicos/metabolismo , Estanozolol/química , Estanozolol/farmacologia , Testosterona/química , Testosterona/farmacologia , Acetato de Trembolona/química , Acetato de Trembolona/farmacologia , Tubulina (Proteína)/genética
6.
Growth Horm IGF Res ; 50: 42-47, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31862540

RESUMO

OBJECTIVE: Growth hormone (GH) is widely known for its peripheral effects during growth and development. However, numerous reports also suggest that GH exert pro-cognitive, restorative, and protective properties in the brain. In in vitro studies, the detection of dendritic spines, small protrusions extending from axons, can act as a marker for cognition-related function as spine formation is considered to be associated with learning and memory. Here we show that an acute 24-hour treatment of GH can increase dendritic spine density in primary hippocampal cell cultures. DESIGN: Primary hippocampal cells were harvested from embryonic Wistar rats and cultured for 14 days. Cells were treated with supra-physiological doses of GH (10-1000 nM) and subjected to a high-throughput screening protocol. Images were acquired and analyzed using automated image analysis and the number of spines, spines per neurite length, neurite length, and mean area of spines, was reported. RESULTS: GH treatment (1000 nM) increased the number of dendritic spines by 83% and spines per neurite length by 82% when compared to control. For comparison BDNF, a known inducer of spine densities, produced statistically non-significant increase in this setting. CONCLUSION: The results was found significant using the highest supra-physiological dose of GH, and the present study further confirms a potential role of the hormone in the treatment of cognitive dysfunction.


Assuntos
Espinhas Dendríticas/efeitos dos fármacos , Hormônio do Crescimento/farmacologia , Hipocampo/citologia , Neuritos/efeitos dos fármacos , Animais , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Ensaios de Triagem em Larga Escala , Técnicas In Vitro , Cultura Primária de Células , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA