Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Clin Neurophysiol ; 146: 147-161, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36543611

RESUMO

OBJECTIVE: Local field potential (LFP) recordings from deep brain stimulation (DBS) electrodes are often contaminated with electrocardiographic (ECG) artifacts that hinder the detection of disease-specific electrical brain activity. METHODS: Three ECG suppression methods were evaluated: (1) QRS interpolation of the Perceive toolbox, (2) template subtraction, and (3) singular value decomposition (SVD). LFPs were recorded with the Medtronic PerceptTM PC system in nine Parkinson's disease patients with stimulation OFF ("OFF-DBS"; anode disconnected) and ON at 0 mA ("ON-DBS 0 mA"; anode connected). Findings were verified with simulated ECG-contaminated time series. RESULTS: ECG artifacts were present in 10 out of 18 ON-DBS 0 mA recordings. All ECG suppression methods drastically reduced artifact-induced beta band (13-35 Hz) power and at least partly recovered the beta peak and beta burst dynamics. Using external ECG recordings and lengthening artifact epoch length improved the performance of the suppression methods. Increasing epoch length, however, elevated the risk of flattening the beta peak and losing beta burst dynamics. CONCLUSIONS: The SVD method formed the preferred trade-off between artifact cleaning and signal loss, as long as its parameter settings are adequately chosen. SIGNIFICANCE: ECG suppression methods enable analysis of disease-specific neural activity from signals affected by ECG artifacts.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Humanos , Artefatos , Estimulação Encefálica Profunda/métodos , Doença de Parkinson/diagnóstico , Doença de Parkinson/terapia , Eletrodos , Eletrocardiografia
2.
Clin Neurophysiol Pract ; 7: 103-106, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35345863

RESUMO

Background: Essential tremor (ET) is one of the most common movement disorders, and continuous deep brain stimulation (DBS) is an established treatment for medication-refractory cases. However, the need for increasing stimulation intensities, with unpleasant side effects, and DBS tolerance over time can be problematic. The advent of novel DBS devices now provides the opportunity to longitudinally record LFPs using the implanted pulse generator, which opens up possibilities to implement adaptive DBS algorithms in a real-life setting. Methods: Here we report a case of thalamic LFP activity recorded using a commercially available sensing-enabled DBS pulse generator (Medtronic Percept PC). Results: In the OFF-stimulation condition, a peak tremor frequency of 3.8 Hz was identified during tremor evoking movements as assessed by video and accelerometers. Activity at the same and supraharmonic frequency was seen in the frequency spectrum of the LFP data from the left vim nucleus during motor tasks. Coherence analysis showed that peripherally recorded tremor was coherent with the LFP signal at the tremor frequency and supraharmonic frequency. Conclusion: This is the first report of recorded tremor-related thalamic activity using the electrodes and pulse generator of an implanted DBS system. Larger studies are needed to evaluate the clinical potential of these fully implantable systems, and ultimately pulse generators with sensing-coupled algorithms driving stimulation, to really close the loop.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA