Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Microbiol Spectr ; 10(3): e0234621, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35579457

RESUMO

Novel bacterial isolates with the capabilities of lignin depolymerization, catabolism, or both, could be pertinent to lignocellulosic biofuel applications. In this study, we aimed to identify anaerobic bacteria that could address the economic challenges faced with microbial-mediated biotechnologies, such as the need for aeration and mixing. Using a consortium seeded from temperate forest soil and enriched under anoxic conditions with organosolv lignin as the sole carbon source, we successfully isolated a novel bacterium, designated 159R. Based on the 16S rRNA gene, the isolate belongs to the genus Sodalis in the family Bruguierivoracaceae. Whole-genome sequencing revealed a genome size of 6.38 Mbp and a GC content of 55 mol%. To resolve the phylogenetic position of 159R, its phylogeny was reconstructed using (i) 16S rRNA genes of its closest relatives, (ii) multilocus sequence analysis (MLSA) of 100 genes, (iii) 49 clusters of orthologous groups (COG) domains, and (iv) 400 conserved proteins. Isolate 159R was closely related to the deadwood associated Sodalis guild rather than the tsetse fly and other insect endosymbiont guilds. Estimated genome-sequence-based digital DNA-DNA hybridization (dDDH), genome percentage of conserved proteins (POCP), and an alignment analysis between 159R and the Sodalis clade species further supported that isolate 159R was part of the Sodalis genus and a strain of Sodalis ligni. We proposed the name Sodalis ligni str. 159R (=DSM 110549 = ATCC TSD-177). IMPORTANCE Currently, in the paper industry, paper mill pulping relies on unsustainable and costly processes to remove lignin from lignocellulosic material. A greener approach is biopulping, which uses microbes and their enzymes to break down lignin. However, there are limitations to biopulping that prevent it from outcompeting other pulping processes, such as requiring constant aeration and mixing. Anaerobic bacteria are a promising alternative source for consolidated depolymerization of lignin and its conversion to valuable by-products. We presented Sodalis ligni str. 159R and its characteristics as another example of potential mechanisms that can be developed for lignocellulosic applications.


Assuntos
Enterobacteriaceae , Lignina , Anaerobiose , Animais , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Enterobacteriaceae/genética , Lignina/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Simbiose
2.
Front Microbiol ; 12: 632731, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34017316

RESUMO

Thermoflexus hugenholtzii JAD2T, the only cultured representative of the Chloroflexota order Thermoflexales, is abundant in Great Boiling Spring (GBS), NV, United States, and close relatives inhabit geothermal systems globally. However, no defined medium exists for T. hugenholtzii JAD2T and no single carbon source is known to support its growth, leaving key knowledge gaps in its metabolism and nutritional needs. Here, we report comparative genomic analysis of the draft genome of T. hugenholtzii JAD2T and eight closely related metagenome-assembled genomes (MAGs) from geothermal sites in China, Japan, and the United States, representing "Candidatus Thermoflexus japonica," "Candidatus Thermoflexus tengchongensis," and "Candidatus Thermoflexus sinensis." Genomics was integrated with targeted exometabolomics and 13C metabolic probing of T. hugenholtzii. The Thermoflexus genomes each code for complete central carbon metabolic pathways and an unusually high abundance and diversity of peptidases, particularly Metallo- and Serine peptidase families, along with ABC transporters for peptides and some amino acids. The T. hugenholtzii JAD2T exometabolome provided evidence of extracellular proteolytic activity based on the accumulation of free amino acids. However, several neutral and polar amino acids appear not to be utilized, based on their accumulation in the medium and the lack of annotated transporters. Adenine and adenosine were scavenged, and thymine and nicotinic acid were released, suggesting interdependency with other organisms in situ. Metabolic probing of T. hugenholtzii JAD2T using 13C-labeled compounds provided evidence of oxidation of glucose, pyruvate, cysteine, and citrate, and functioning glycolytic, tricarboxylic acid (TCA), and oxidative pentose-phosphate pathways (PPPs). However, differential use of position-specific 13C-labeled compounds showed that glycolysis and the TCA cycle were uncoupled. Thus, despite the high abundance of Thermoflexus in sediments of some geothermal systems, they appear to be highly focused on chemoorganotrophy, particularly protein degradation, and may interact extensively with other microorganisms in situ.

3.
Sci Rep ; 10(1): 20781, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33247159

RESUMO

The adenosine A3 receptor (A3R) belongs to a family of four adenosine receptor (AR) subtypes which all play distinct roles throughout the body. A3R antagonists have been described as potential treatments for numerous diseases including asthma. Given the similarity between (adenosine receptors) orthosteric binding sites, obtaining highly selective antagonists is a challenging but critical task. Here we screen 39 potential A3R, antagonists using agonist-induced inhibition of cAMP. Positive hits were assessed for AR subtype selectivity through cAMP accumulation assays. The antagonist affinity was determined using Schild analysis (pA2 values) and fluorescent ligand binding. Structure-activity relationship investigations revealed that loss of the 3-(dichlorophenyl)-isoxazolyl moiety or the aromatic nitrogen heterocycle with nitrogen at α-position to the carbon of carboximidamide group significantly attenuated K18 antagonistic potency. Mutagenic studies supported by molecular dynamic simulations combined with Molecular Mechanics-Poisson Boltzmann Surface Area calculations identified the residues important for binding in the A3R orthosteric site. We demonstrate that K18, which contains a 3-(dichlorophenyl)-isoxazole group connected through carbonyloxycarboximidamide fragment with a 1,3-thiazole ring, is a specific A3R (< 1 µM) competitive antagonist. Finally, we introduce a model that enables estimates of the equilibrium binding affinity for rapidly disassociating compounds from real-time fluorescent ligand-binding studies. These results demonstrate the pharmacological characterisation of a selective competitive A3R antagonist and the description of its orthosteric binding mode. Our findings may provide new insights for drug discovery.


Assuntos
Antagonistas do Receptor A3 de Adenosina/química , Antagonistas do Receptor A3 de Adenosina/farmacologia , Antagonistas do Receptor A3 de Adenosina/farmacocinética , Animais , Sítios de Ligação/genética , Ligação Competitiva , Células CHO , Cricetulus , AMP Cíclico/metabolismo , Avaliação Pré-Clínica de Medicamentos , Humanos , Cinética , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Ensaio Radioligante , Ratos , Receptor A3 de Adenosina/química , Receptor A3 de Adenosina/genética , Receptor A3 de Adenosina/metabolismo , Receptores Purinérgicos P1/química , Receptores Purinérgicos P1/genética , Receptores Purinérgicos P1/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade da Espécie , Relação Estrutura-Atividade
4.
mBio ; 11(5)2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32900811

RESUMO

Fungal-bacterial symbioses range from antagonisms to mutualisms and remain one of the least understood interdomain interactions despite their ubiquity as well as ecological and medical importance. To build a predictive conceptual framework for understanding interactions between fungi and bacteria in different types of symbioses, we surveyed fungal and bacterial transcriptional responses in the mutualism between Rhizopus microsporus (Rm) (ATCC 52813, host) and its Mycetohabitans (formerly Burkholderia) endobacteria versus the antagonism between a nonhost Rm (ATCC 11559) and Mycetohabitans isolated from the host, at two time points, before and after partner physical contact. We found that bacteria and fungi sensed each other before contact and altered gene expression patterns accordingly. Mycetohabitans did not discriminate between the host and nonhost and engaged a common set of genes encoding known as well as novel symbiosis factors. In contrast, responses of the host versus nonhost to endobacteria were dramatically different, converging on the altered expression of genes involved in cell wall biosynthesis and reactive oxygen species (ROS) metabolism. On the basis of the observed patterns, we formulated a set of hypotheses describing fungal-bacterial interactions and tested some of them. By conducting ROS measurements, we confirmed that nonhost fungi increased production of ROS in response to endobacteria, whereas host fungi quenched their ROS output, suggesting that ROS metabolism contributes to the nonhost resistance to bacterial infection and the host ability to form a mutualism. Overall, our study offers a testable framework of predictions describing interactions of early divergent Mucoromycotina fungi with bacteria.IMPORTANCE Animals and plants interact with microbes by engaging specific surveillance systems, regulatory networks, and response modules that allow for accommodation of mutualists and defense against antagonists. Antimicrobial defense responses are mediated in both animals and plants by innate immunity systems that owe their functional similarities to convergent evolution. Like animals and plants, fungi interact with bacteria. However, the principles governing these relations are only now being discovered. In a study system of host and nonhost fungi interacting with a bacterium isolated from the host, we found that bacteria used a common gene repertoire to engage both partners. In contrast, fungal responses to bacteria differed dramatically between the host and nonhost. These findings suggest that as in animals and plants, the genetic makeup of the fungus determines whether bacterial partners are perceived as mutualists or antagonists and what specific regulatory networks and response modules are initiated during each encounter.


Assuntos
Antibiose/genética , Bactérias/genética , Bactérias/metabolismo , Fungos/genética , Fungos/metabolismo , Simbiose/genética , Bactérias/classificação , Burkholderia/genética , Burkholderia/metabolismo , Fungos/classificação , Perfilação da Expressão Gênica , Rhizopus/genética , Rhizopus/metabolismo , Transdução de Sinais
5.
Microbiol Resour Announc ; 9(15)2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32273354

RESUMO

We report here the draft genome sequence of Yokenella regensburgei strain WCD67, isolated from the boxelder bug (Boisea trivittata). The genome is 5,277,883 bp in size, has a GC content of 54.12%, and has 5,416 genes. A total of 17 mobile elements were discovered, 6 of which were predicted to be phages.

6.
Microbiol Resour Announc ; 9(5)2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32001557

RESUMO

We report eight genomes from representatives of the phylum Acidobacteria subdivisions 1 and 3, isolated from soils. The genome sizes range from 4.9 to 6.7 Mb. Genomic analysis reveals putative genes for low- and high-affinity respiratory oxygen reductases, high-affinity hydrogenases, and the capacity to use a diverse collection of carbohydrates.

7.
J Med Chem ; 62(19): 8831-8846, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31502843

RESUMO

The adenosine A3 receptor (A3R) binds adenosine and is a drug target against cancer cell proliferation. Currently, there is no experimental structure of A3R. Here, we have generated a molecular model of A3R in complex with two agonists, the nonselective 1-(6-amino-9H-purin-9-yl)-1-deoxy-N-ethyl-ß-d-ribofuranuronamide (NECA) and the selective 1-deoxy-1-[6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-N-methyl-ß-d-ribofuranuronamide (IB-MECA). Molecular dynamics simulations of the wild-type A3R in complex with both agonists, combined with in vitro mutagenic studies revealed important residues for binding. Further, molecular mechanics-generalized Born surface area calculations were able to distinguish mutations that reduce or negate agonistic activity from those that maintained or increased the activity. Our studies reveal that selectivity of IB-MECA toward A3R requires not only direct interactions with residues within the orthosteric binding area but also with remote residues. Although V1695.30 is considered to be a selectivity filter for A3R binders, when it was mutated to glutamic acid or alanine, the activity of IB-MECA increased by making new van der Waals contacts with TM5. This result may have implications in the design of new A3R agonists.


Assuntos
Agonistas do Receptor A3 de Adenosina/química , Receptor A3 de Adenosina/química , Adenosina/análogos & derivados , Adenosina/química , Adenosina/metabolismo , Adenosina/farmacologia , Agonistas do Receptor A3 de Adenosina/metabolismo , Agonistas do Receptor A3 de Adenosina/farmacologia , Animais , Sítios de Ligação , Células CHO , Cricetinae , Cricetulus , Humanos , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Receptor A3 de Adenosina/genética , Receptor A3 de Adenosina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Termodinâmica
8.
Microbiol Resour Announc ; 8(18)2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-31048387

RESUMO

The complete genome sequence of the gammaproteobacterial isolate Serratia quinivorans 124R consists of 5 Mb over 2 scaffolds and a G+C content of 52.85%. Genes relating to aromatic metabolism reflect its isolation on organosolv lignin as a sole carbon source under anoxic conditions as well as the potential for lignin biorefinery applications.

9.
Curr Microbiol ; 76(5): 566-574, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30820638

RESUMO

Burkholderia cenocepacia TAtl-371 was isolated from the rhizosphere of a tomato plant growing in Atlatlahucan, Morelos, Mexico. This strain exhibited a broad antimicrobial spectrum against bacteria, yeast, and fungi. Here, we report and describe the improved, high-quality permanent draft genome of B. cenocepacia TAtl-371, which was sequenced using a combination of PacBio RS and PacBio RS II sequencing methods. The 7,496,106 bp genome of the TAtl-371 strain is arranged in three scaffolds, contains 6722 protein-coding genes, and 99 RNA only-encoding genes. Genome analysis revealed genes related to biosynthesis of antimicrobials such as non-ribosomal peptides, siderophores, chitinases, and bacteriocins. Moreover, analysis of bacterial growth on different carbon and nitrogen sources shows that the strain retains its antimicrobial ability.


Assuntos
Antibiose , Burkholderia cenocepacia/genética , Complexo Burkholderia cepacia , Carbono/metabolismo , Genoma Bacteriano , Nitrogênio/metabolismo , Bacteriocinas/genética , Burkholderia cenocepacia/isolamento & purificação , Quitinases/genética , Solanum lycopersicum/microbiologia , México , Rizosfera , Análise de Sequência de DNA , Sideróforos/genética , Microbiologia do Solo
10.
Artigo em Inglês | MEDLINE | ID: mdl-30533634

RESUMO

Draft genome sequences of 11 bacteria belonging to the family Microbacteriaceae were obtained using Illumina technology. The genomes of these strains have sizes from 3.14 to 4.30 Mb with their genomic DNA characterized as having high G+C contents (above 65%). These genomic data will be useful for natural taxonomy and comparative genomic studies of bacterial strains of the family Microbacteriaceae.

11.
Artigo em Inglês | MEDLINE | ID: mdl-30533809

RESUMO

For their food source, Trachymyrmex septentrionalis ants raise symbiotic fungus gardens that contain bacteria whose functions are poorly understood. Here, we report the genome sequences of eight bacteria isolated from these fungus gardens to better describe the ecology of these strains and their potential to produce secondary metabolites in this niche.

13.
J Chem Inf Model ; 58(4): 794-815, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29485875

RESUMO

An intense effort is made by pharmaceutical and academic research laboratories to identify and develop selective antagonists for each adenosine receptor (AR) subtype as potential clinical candidates for "soft" treatment of various diseases. Crystal structures of subtypes A2A and A1ARs offer exciting opportunities for structure-based drug design. In the first part of the present work, Maybridge HitFinder library of 14400 compounds was utilized to apply a combination of structure-based against the crystal structure of A2AAR and ligand-based methodologies. The docking poses were rescored by CHARMM energy minimization and calculation of the desolvation energy using Poisson-Boltzmann equation electrostatics. Out of the eight selected and tested compounds, five were found positive hits (63% success). Although the project was initially focused on targeting A2AAR, the identified antagonists exhibited low micromolar or micromolar affinity against A2A/A3, ARs, or A3AR, respectively. Based on these results, 19 compounds characterized by novel chemotypes were purchased and tested. Sixteen of them were identified as AR antagonists with affinity toward combinations of the AR family isoforms (A2A/A3, A1/A3, A1/A2A/A3, and A3). The second part of this work involves the performance of hundreds of molecular dynamics (MD) simulations of complexes between the ARs and a total of 27 ligands to resolve the binding interactions of the active compounds, which were not achieved by docking calculations alone. This computational work allowed the prediction of stable and unstable complexes which agree with the experimental results of potent and inactive compounds, respectively. Of particular interest is that the 2-amino-thiophene-3-carboxamides, 3-acylamino-5-aryl-thiophene-2-carboxamides, and carbonyloxycarboximidamide derivatives were found to be selective and possess a micromolar to low micromolar affinity for the A3 receptor.


Assuntos
Descoberta de Drogas , Simulação de Dinâmica Molecular , Antagonistas de Receptores Purinérgicos P1/metabolismo , Antagonistas de Receptores Purinérgicos P1/farmacologia , Receptores Purinérgicos P1/metabolismo , Avaliação Pré-Clínica de Medicamentos , Humanos , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Antagonistas de Receptores Purinérgicos P1/química , Receptores Purinérgicos P1/química , Relação Estrutura-Atividade , Termodinâmica
14.
Genome Announc ; 6(5)2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29437089

RESUMO

Three strains of a novel Rhizobiales species were isolated from temperate deciduous forest soil in central Massachusetts. Their genomes consist of 9.09 to 10.29 Mb over 3 to 4 scaffolds each and indicate that diverse nitrogenous compounds are used by these organisms.

15.
Genome Announc ; 6(4)2018 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-29371348

RESUMO

Verrucomicrobium sp. strain GAS474 was isolated from the mineral soil of a temperate deciduous forest in central Massachusetts. Here, we present the complete genome sequence of this phylogenetically novel organism, which consists of a total of 3,763,444 bp on a single scaffold, with a 65.8% GC content and 3,273 predicted open reading frames.

16.
Genome Announc ; 6(2)2018 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-29326212

RESUMO

Thermoanaerobacterium sp. strain RBIITD was isolated from contaminated rich growth medium at 55°C in an anaerobic chamber. It primarily produces butyrate as a fermentation product from plant biomass-derived sugars. The whole-genome sequence of the strain is 3.4 Mbp, with 3,444 genes and 32.48% GC content.

17.
Stand Genomic Sci ; 12: 80, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29255574

RESUMO

10.1601/nm.26956 caballeronis is a plant-associated bacterium. Strain TNe-841T was isolated from the rhizosphere of tomato (Solanum lycopersicum L. var. lycopersicum) growing in Nepantla Mexico State. Initially this bacterium was found to effectively nodulate Phaseolus vulgaris L. However, from an analysis of the genome of strain TNe-841T and from repeat inoculation experiments, we found that this strain did not nodulate bean and also lacked nodulation genes, suggesting that the genes were lost. The genome consists of 7,115,141 bp with a G + C content of 67.01%. The sequence includes 6251 protein-coding genes and 87 RNA genes.

18.
Genome Announc ; 5(35)2017 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-28860240

RESUMO

Roseovarius sp. strain MCTG156(2b) was isolated from a phytoplankton net sample collected on the west coast of Scotland and was selected based on its ability to degrade polycyclic aromatic hydrocarbons. Here, we present the genome sequence of this strain, which is 5,113,782 bp, with 5,142 genes and an average G+C content of 60.7%.

19.
Stand Genomic Sci ; 12: 46, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28775794

RESUMO

The genetic platforms of Deinococcus species remain the only systems in which massive ionizing radiation (IR)-induced genome damage can be investigated in vivo at exposures commensurate with cellular survival. We report the whole genome sequence of the extremely IR-resistant rod-shaped bacterium Deinococcus ficus KS 0460 and its phenotypic characterization. Deinococcus ficus KS 0460 has been studied since 1987, first under the name Deinobacter grandis, then Deinococcus grandis. The D. ficus KS 0460 genome consists of a 4.019 Mbp sequence (69.7% GC content and 3894 predicted genes) divided into six genome partitions, five of which are confirmed to be circular. Circularity was determined manually by mate pair linkage. Approximately 76% of the predicted proteins contained identifiable Pfam domains and 72% were assigned to COGs. Of all D. ficus KS 0460 proteins, 79% and 70% had homologues in Deinococcus radiodurans ATCC BAA-816 and Deinococcus geothermalis DSM 11300, respectively. The most striking differences between D. ficus KS 0460 and D. radiodurans BAA-816 identified by the comparison of the KEGG pathways were as follows: (i) D. ficus lacks nine enzymes of purine degradation present in D. radiodurans, and (ii) D. ficus contains eight enzymes involved in nitrogen metabolism, including nitrate and nitrite reductases, that D. radiodurans lacks. Moreover, genes previously considered to be important to IR resistance are missing in D. ficus KS 0460, namely, for the Mn-transporter nramp, and proteins DdrF, DdrJ and DdrK, all of which are also missing in Deinococcus deserti. Otherwise, D. ficus KS 0460 exemplifies the Deinococcus lineage.

20.
Genome Announc ; 5(32)2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28798189

RESUMO

Oceanicola sp. strain MCTG156(1a) was isolated from a phytoplankton net sample collected on the west coast of Scotland and selected based on its ability to degrade polycyclic aromatic hydrocarbons. Here, we present the genome sequence of this strain, which comprises 3,881,122 bp with 3,949 genes and an average G+C content of 62.7%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA