Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 7384, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35513430

RESUMO

Pinus species dominate fire-prone ecosystems throughout the northern hemisphere. Their litter drive fires that control plant community flammability and multiple ecological processes. To better understand the patterns and mechanisms of pine flammability, we measured leaf characteristics (needle length and thickness) and conducted combustion experiments on litter from 31 species. We paired flammability results with bark accumulation data and used phylogenetic generalized least squares regression to examine relationships between physical traits and flammability. Pine flammability varied widely among pines: flame heights and fuel consumption varied three-fold, and flaming and smoldering durations varied three- to six-fold. Subgenus Pinus species were the most flammable and subgenus Strobus species had the lowest flammability. Needle length was the best predictor of flammability with a significant interaction with subgenus, suggesting that flammability of pines in subgenus Strobus was more affected by physical traits than pines in subgenus Pinus. Species in the subgenus Pinus that accumulated outer bark rapidly also had high flammability, while the relationship was not significant in subgenus Strobus. These results highlight the diverse patterns of flammability in North American pines and the complexity in the mechanisms causing differential flammability.


Assuntos
Incêndios , Pinus , Ecossistema , Filogenia , Casca de Planta
2.
Sci Total Environ ; 789: 147872, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34082198

RESUMO

Globally increasing wildfires have been attributed to anthropogenic climate change. However, providing decision makers with a clear understanding of how future planetary warming could affect fire regimes is complicated by confounding land use factors that influence wildfire and by uncertainty associated with model simulations of climate change. We use an ensemble of statistically downscaled Global Climate Models in combination with the Physical Chemistry Fire Frequency Model (PC2FM) to project changing potential fire probabilities in the conterminous United States for two scenarios representing lower (RCP 4.5) and higher (RCP 8.5) greenhouse gas emission futures. PC2FM is a physically-based and scale-independent model that predicts mean fire return intervals from both fire reactant and reaction variables, which are largely dependent on a locale's climate. Our results overwhelmingly depict increasing potential fire probabilities across the conterminous US for both climate scenarios. The primary mechanism for the projected increases is rising temperatures, reflecting changes in the chemical reaction environment commensurate with enhanced photosynthetic rates and available thermal molecular energy. Existing high risk areas, such as the Cascade Range and the Coastal California Mountains, are projected to experience greater annual fire occurrence probabilities, with relative increases of 122% and 67%, respectively, under RCP 8.5 compared to increases of 63% and 38% under RCP 4.5. Regions not currently associated with frequently occurring wildfires, such as New England and the Great Lakes, are projected to experience a doubling of occurrence probabilities by 2100 under RCP 8.5. This high resolution, continental-scale modeling study of climate change impacts on potential fire probability accounts for shifting background environmental conditions across regions that will interact with topographic drivers to significantly alter future fire probabilities. The ensemble modeling approach presents a useful planning tool for mitigation and adaptation strategies in regions of increasing wildfire risk.


Assuntos
Incêndios , Incêndios Florestais , Mudança Climática , New England , Probabilidade , Estados Unidos
3.
PLoS One ; 12(7): e0180956, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28704457

RESUMO

The effects of climate on wildland fire confronts society across a range of different ecosystems. Water and temperature affect the combustion dynamics, irrespective of whether those are associated with carbon fueled motors or ecosystems, but through different chemical, physical, and biological processes. We use an ecosystem combustion equation developed with the physical chemistry of atmospheric variables to estimate and simulate fire probability and mean fire interval (MFI). The calibration of ecosystem fire probability with basic combustion chemistry and physics offers a quantitative method to address wildland fire in addition to the well-studied forcing factors such as topography, ignition, and vegetation. We develop a graphic analysis tool for estimating climate forced fire probability with temperature and precipitation based on an empirical assessment of combustion theory and fire prediction in ecosystems. Climate-affected fire probability for any period, past or future, is estimated with given temperature and precipitation. A graphic analyses of wildland fire dynamics driven by climate supports a dialectic in hydrologic processes that affect ecosystem combustion: 1) the water needed by plants to produce carbon bonds (fuel) and 2) the inhibition of successful reactant collisions by water molecules (humidity and fuel moisture). These two postulates enable a classification scheme for ecosystems into three or more climate categories using their position relative to change points defined by precipitation in combustion dynamics equations. Three classifications of combustion dynamics in ecosystems fire probability include: 1) precipitation insensitive, 2) precipitation unstable, and 3) precipitation sensitive. All three classifications interact in different ways with variable levels of temperature.


Assuntos
Incêndios , Clima , Ecossistema , Modelos Teóricos , Probabilidade , Temperatura
4.
Oecologia ; 183(4): 1183-1195, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28220301

RESUMO

To test tree growth sensitivity to temperature under different ambient CO2 concentrations, we determined stem radial growth rates as they relate to variation in temperature during the last deglacial period, and compare these to modern tree growth rates as they relate to spatial variation in temperature across the modern species distributional range. Paleo oaks were sampled from Northern Missouri, USA and compared to a pollen-based, high-resolution paleo temperature reconstruction from Northern Illinois, USA. Growth data were from 53 paleo bur oak log cross sections collected in Missouri. These oaks were preserved in river and stream sediments and were radiocarbon-dated to a period of rapid climate change during the last deglaciation (10.5 and 13.3 cal kyr BP). Growth data from modern bur oaks were obtained from increment core collections paired with USDA Forest Service Forest Inventory and Analysis data collected across the Great Plains, Midwest, and Upper Great Lakes regions. For modern oaks growing at an average [CO2] of 330 ppm, growth sensitivity to temperature (i.e., the slope of growth rate versus temperature) was about twice that of paleo oaks growing at an average [CO2] of 230 ppm. These data help to confirm that leaf-level predictions that photosynthesis and thus growth will be more sensitive to temperature at higher [CO2] in mature trees-suggesting that tree growth forest productivity will be increasingly sensitive to temperature under projected global warming and high-[CO2] conditions.


Assuntos
Temperatura , Árvores , Dióxido de Carbono , Mudança Climática , Quercus
5.
Glob Chang Biol ; 22(2): 889-902, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26391334

RESUMO

Rising atmospheric [CO2 ], ca , is expected to affect stomatal regulation of leaf gas-exchange of woody plants, thus influencing energy fluxes as well as carbon (C), water, and nutrient cycling of forests. Researchers have proposed various strategies for stomatal regulation of leaf gas-exchange that include maintaining a constant leaf internal [CO2 ], ci , a constant drawdown in CO2 (ca  - ci ), and a constant ci /ca . These strategies can result in drastically different consequences for leaf gas-exchange. The accuracy of Earth systems models depends in part on assumptions about generalizable patterns in leaf gas-exchange responses to varying ca . The concept of optimal stomatal behavior, exemplified by woody plants shifting along a continuum of these strategies, provides a unifying framework for understanding leaf gas-exchange responses to ca . To assess leaf gas-exchange regulation strategies, we analyzed patterns in ci inferred from studies reporting C stable isotope ratios (δ(13) C) or photosynthetic discrimination (∆) in woody angiosperms and gymnosperms that grew across a range of ca spanning at least 100 ppm. Our results suggest that much of the ca -induced changes in ci /ca occurred across ca spanning 200 to 400 ppm. These patterns imply that ca  - ci will eventually approach a constant level at high ca because assimilation rates will reach a maximum and stomatal conductance of each species should be constrained to some minimum level. These analyses are not consistent with canalization toward any single strategy, particularly maintaining a constant ci . Rather, the results are consistent with the existence of a broadly conserved pattern of stomatal optimization in woody angiosperms and gymnosperms. This results in trees being profligate water users at low ca , when additional water loss is small for each unit of C gain, and increasingly water-conservative at high ca , when photosystems are saturated and water loss is large for each unit C gain.


Assuntos
Dióxido de Carbono/metabolismo , Folhas de Planta/metabolismo , Árvores/metabolismo , Isótopos de Carbono/metabolismo , Cycadopsida/metabolismo , Magnoliopsida/metabolismo , Estômatos de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA