Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 11(14): e2200249, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35526111

RESUMO

The initial contact with blood and its components, including plasma proteins and platelets, directs the body's response to foreign materials. Natural scaffolds of extracellular matrix or fibrin contain fibrils with nanoscale dimensions, but how platelets specifically respond to the topography and architecture of fibrous materials is still incompletely understood. Here, planar and nanofiber scaffolds are fabricated from native fibrinogen to characterize the morphology of adherent platelets and activation markers for phosphatidylserine exposure and α-granule secretion by confocal fluorescence microscopy and scanning electron microscopy. Different fibrinogen topographies equally support the spreading and α-granule secretion of washed platelets. In contrast, preincubation of the scaffolds with plasma diminishes platelet spreading on planar fibrinogen surfaces but not on nanofibers. The data show that the enhanced interactions of platelets with nanofibers result from a higher locally accessible surface area, effectively increasing the ligand density for integrin-mediated responses. Overall, fibrinogen nanofibers direct platelets toward robust adhesion formation and α-granule secretion while minimizing their procoagulant activity. Similar results on fibrinogen-coated polydimethylsiloxane substrates with micrometer-sized 3D features suggest that surface topography could be used more generally to steer blood-materials interactions on different length scales for enhancing the initial wound healing steps.


Assuntos
Hemostáticos , Nanofibras , Plaquetas/metabolismo , Fibrina/química , Fibrinogênio/química
2.
Biomacromolecules ; 22(11): 4642-4658, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34670087

RESUMO

Fibrinogen nanofibers are very attractive biomaterials to mimic the native blood clot architecture. Previously, we reported the self-assembly of fibrinogen nanofibers in the presence of monovalent salts and have now studied how divalent salts influence fibrinogen precipitation. Although the secondary fibrinogen structure was significantly altered with divalent metal ions, morphological analysis revealed exclusively smooth fibrinogen precipitates. In situ monitoring of the surface roughness facilitated predicting the tendency of various salts to form fibrinogen fibers or smooth films. Analysis of the chemical composition revealed that divalent salts were removed from smooth fibrinogen films upon rinsing while monovalent Na+ species were still present in fibrinogen fibers. Therefore, we assume that the decisive factor controlling the morphology of fibrinogen precipitates is direct ion-protein contact, which requires disruption of the ion-surrounding hydration shells. We conclude that in fibrinogen aggregates, this mechanism is effective only for monovalent ions, whereas divalent ions are limited to indirect fibrinogen adsorption.


Assuntos
Fibrinogênio , Nanofibras , Adsorção , Cátions Bivalentes , Íons
3.
Macromol Biosci ; 21(5): e2000412, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33687802

RESUMO

Fibrinogen nanofibers hold great potential for applications in wound healing and personalized regenerative medicine due to their ability to mimic the native blood clot architecture. Although versatile strategies exist to induce fibrillogenesis of fibrinogen in vitro, little is known about the underlying mechanisms and the associated length scales. Therefore, in this manuscript the current state of research on fibrinogen fibrillogenesis in vitro is reviewed. For the first time, the manifold factors leading to the assembly of fibrinogen molecules into fibers are categorized considering three main groups: substrate interactions, denaturing and non-denaturing buffer conditions. Based on the meta-analysis in the review it is concluded that the assembly of fibrinogen is driven by several mechanisms across different length scales. In these processes, certain buffer conditions, in particular the presence of salts, play a predominant role during fibrinogen self-assembly compared to the surface chemistry of the substrate material. Yet, to tailor fibrous fibrinogen scaffolds with defined structure-function-relationships for future tissue engineering applications, it still needs to be understood which particular role each of these factors plays during fiber assembly. Therefore, the future combination of experimental and simulation studies is proposed to understand the intermolecular interactions of fibrinogen, which induce the assembly of soluble fibrinogen into solid fibers.


Assuntos
Fibrinogênio/química , Nanofibras/química , Animais , Coagulação Sanguínea , Humanos , Interações Hidrofóbicas e Hidrofílicas , Técnicas In Vitro , Conformação Proteica , Propriedades de Superfície
4.
RSC Adv ; 10(65): 39854-39869, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-35558137

RESUMO

Tailoring the surface properties of materials for biomedical applications is important to avoid clinical complications. Forming thin layers of amphiphilic molecules with apolar regions that facilitate attractive intermolecular interactions, can be a suitable and versatile approach to achieve hydrophobic surface modification and provide functional antibacterial properties. Aiming to correlate layer structure and properties starting from film formation, octadecylphosphonic acid (ODPA) and dimethyloctadecyl (3-trimethoxysilylpropyl) ammonium chloride (DMOAP) layers were adsorbed onto smooth titania surfaces. Then the films were studied by atomic force microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS), and their interactions with aqueous environments were characterized by contact angle and zeta potential measurements. In addition, antibacterial assays were performed using E. coli and S. mutants to reveal the antibacterial properties effected by the surface modification. Immediately after sputter deposition, titania was hydrophilic; however, after air storage and adsorption of DMOAP or ODPA, an increase in the water contact angle was observed. XPS investigations after layer formation and after antibacterial tests revealed that the attachment of layers assembled from ODPA on titania substrates is considerably stronger and more stable than that observed for DMOAP films. Heat treatment strongly affects DMOAP layers. Furthermore, DMOAP layers are not stable under biological conditions.

5.
Nano Lett ; 19(9): 6554-6563, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31418579

RESUMO

As a key player in blood coagulation and tissue repair, fibrinogen has gained increasing attention to develop nanofibrous biomaterial scaffolds for wound healing. Current techniques to prepare protein nanofibers, like electrospinning or extrusion, are known to induce lasting changes in the protein conformation. Often, such secondary changes are associated with amyloid transitions, which can evoke unwanted disease mechanisms. Starting from our recently introduced technique to self-assemble fibrinogen scaffolds in physiological salt buffers, we here investigated the morphology and secondary structure of our novel fibrinogen nanofibers. Aiming at optimum self-assembly conditions for wound healing scaffolds, we studied the influence of fibrinogen concentration and pH on the protein conformation. Using circular dichroism and Fourier-transform infrared spectroscopy, we observed partial transitions from α-helical structures to ß-strands upon fiber formation. Interestingly, a staining with thioflavin T revealed that this conformational transition was not associated with any amyloid formation. Toward novel scaffolds for wound healing, which are stable in aqueous environment, we also introduced cross-linking of fibrinogen scaffolds in formaldehyde vapor. This treatment allowed us to maintain the nanofibrous morphology while the conformation of fibrinogen nanofibers was redeveloped toward a more native state after rehydration. Altogether, self-assembled fibrinogen scaffolds are excellent candidates for novel wound healing systems since their multiscale structures can be well controlled without inducing any pathogenic amyloid transitions.


Assuntos
Fibrinogênio/química , Nanofibras/química , Cicatrização , Fibrinogênio/farmacologia , Humanos , Nanofibras/uso terapêutico
6.
Biofabrication ; 11(2): 025010, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30829217

RESUMO

Fibrinogen has become highly attractive for tissue engineering scaffolds since it is a naturally occurring blood protein, which contains important binding sites to facilitate cell adhesion. Here, we introduce a novel biofabrication technique to prepare three-dimensional, nanofibrous fibrinogen scaffolds by salt-induced self assembly. For the first time, we were able to fabricate either free-standing or immobilized fibrinogen scaffolds on demand by tailoring the underlying substrate material and adding a fixation and washing procedure after the fiber assembly. Using scanning electron microscopy we observed that different buffers including phosphate buffered saline and sodium phosphate reproducibly yielded dense fiber networks on bare and silanized glass surfaces, gold as well as polystyrene upon drying. Fibrillogenesis could be induced with a fibrinogen concentration of at least 2 mg ml-1 in a pH regime of 7-9. Fiber diameters ranged from 100 to 300 nm, thus resembling native fibrin and ECM protein fibers. By adjusting the salt concentration we could prepare fibrinogen scaffolds with overall dimensions in the centimeter range and a thickness of 3 to 5 µm. Using FTIR analysis we observed peak shifts of the amide bands for fibrinogen nanofibers in comparison to planar fibrinogen, which indicates changes in the secondary structure. Since fibrillogenesis was only induced upon drying when salt ions were present we assume that protein molecules were locally oriented in the respective buffers, which-in combination with the observed conformational changes-led to the assembly of individual molecules into fibers. In summary, our novel self assembly process offers a simple and well controllable method to prepare large scale 3D-scaffolds of fibrinogen nanofibers under physiological conditions. The unique possibility to chose between free-standing and immobilized scaffolds makes our novel biofabrication process highly attractive for the preparation of versatile tissue engineering scaffolds.


Assuntos
Fibrinogênio/química , Microtecnologia/métodos , Nanofibras/química , Cloreto de Sódio/química , Alicerces Teciduais/química , Soluções Tampão , Concentração de Íons de Hidrogênio , Proteínas Imobilizadas/química , Nanofibras/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA