Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Front Toxicol ; 5: 1220998, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37492623

RESUMO

Carcinogenic chemicals, or their metabolites, can be classified as genotoxic or non-genotoxic carcinogens (NGTxCs). Genotoxic compounds induce DNA damage, which can be detected by an established in vitro and in vivo battery of genotoxicity assays. For NGTxCs, DNA is not the primary target, and the possible modes of action (MoA) of NGTxCs are much more diverse than those of genotoxic compounds, and there is no specific in vitro assay for detecting NGTxCs. Therefore, the evaluation of the carcinogenic potential is still dependent on long-term studies in rodents. This 2-year bioassay, mainly applied for testing agrochemicals and pharmaceuticals, is time-consuming, costly and requires very high numbers of animals. More importantly, its relevance for human risk assessment is questionable due to the limited predictivity for human cancer risk, especially with regard to NGTxCs. Thus, there is an urgent need for a transition to new approach methodologies (NAMs), integrating human-relevant in vitro assays and in silico tools that better exploit the current knowledge of the multiple processes involved in carcinogenesis into a modern safety assessment toolbox. Here, we describe an integrative project that aims to use a variety of novel approaches to detect the carcinogenic potential of NGTxCs based on different mechanisms and pathways involved in carcinogenesis. The aim of this project is to contribute suitable assays for the safety assessment toolbox for an efficient and improved, internationally recognized hazard assessment of NGTxCs, and ultimately to contribute to reliable mechanism-based next-generation risk assessment for chemical carcinogens.

3.
Molecules ; 28(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37049848

RESUMO

Bisphenol A (BPA) is one of the most commonly used substances in the manufacture of various everyday products. Growing concerns about its hazardous properties, including endocrine disruption and genotoxicity, have led to its gradual replacement by presumably safer analogues in manufacturing plastics. The widespread use of BPA and, more recently, its analogues has increased their residues in the environment. However, our knowledge of their toxicological profiles is limited and their combined effects are unknown. In the present study, we investigated the toxic effects caused by single bisphenols and by the combined exposure of BPA and its two analogues, BPAP and BPC, after short (24-h) and prolonged (96-h) exposure in HepG2 spheroids. The results showed that BPA did not reduce cell viability in HepG2 spheroids after 24-h exposure. In contrast, BPAP and BPC affected cell viability in HepG2 spheroids. Both binary mixtures (BPA/BPAP and BPA/BPC) decreased cell viability in a dose-dependent manner, but the significant difference was only observed for the combination of BPA/BPC (both at 40 µM). After 96-h exposure, none of the BPs studied affected cell viability in HepG2 spheroids. Only the combination of BPA/BPAP decreased cell viability in a dose-dependent manner that was significant for the combination of 4 µM BPA and 4 µM BPAP. None of the BPs and their binary mixtures studied affected the surface area and growth of spheroids as measured by planimetry. In addition, all BPs and their binary mixtures studied triggered oxidative stress, as measured by the production of reactive oxygen species and malondialdehyde, at both exposure times. Overall, the results suggest that it is important to study the effects of BPs as single compounds. It is even more important to study the effects of combined exposures, as the combined effects may differ from those induced by single compounds.


Assuntos
Compostos Benzidrílicos , Fenóis , Humanos , Células Hep G2 , Compostos Benzidrílicos/toxicidade , Compostos Benzidrílicos/química , Fenóis/toxicidade , Fenóis/química , Estresse Oxidativo
4.
J Hazard Mater ; 454: 131478, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37116332

RESUMO

Bisphenols are widely recognised as toxic compounds that potentially threaten the environment and public health. Here we report the use of cold atmospheric pressure plasma (CAP) to remove bisphenol A (BPA) and bisphenol S (BPS) from aqueous systems. Additionally, methanol was added as a radical scavenger to simulate environmental conditions. After 480 s of plasma treatment, 15-25 % of BPA remained, compared to > 80 % of BPS, with BPA being removed faster (-kt = 3.4 ms-1, half-life = 210 s) than BPS (-kt = 0.15 ms-1, half-life 4700 s). The characterisation of plasma species showed that adding a radical scavenger affects the formation of reactive oxygen and nitrogen species, resulting in a lower amount of ˙OH, H2O2, and NO2- but a similar amount of NO3-. In addition, a non-target approach enabled the elucidation of 11 BPA and five BPS transformation products. From this data, transformation pathways were proposed for both compounds, indicating nitrification with further cleavage, demethylation, and carboxylation, and the coupling of smaller bisphenol intermediates. The toxicological characterisation of the in vitro HepG2 cell model has shown that the mixture of transformation products formed during CAP is less toxic than BPA and BPS, indicating that CAP is effective in safely degrading bisphenols.


Assuntos
Compostos Benzidrílicos , Peróxido de Hidrogênio , Compostos Benzidrílicos/toxicidade , Compostos Benzidrílicos/metabolismo , Fenóis/toxicidade , Fenóis/metabolismo
5.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36835302

RESUMO

Over the past 20 years, numerous tyrosine kinase inhibitors (TKIs) have been introduced for targeted therapy of various types of malignancies. Due to frequent and increasing use, leading to eventual excretion with body fluids, their residues have been found in hospital and household wastewaters as well as surface water. However, the effects of TKI residues in the environment on aquatic organisms are poorly described. In the present study, we investigated the cytotoxic and genotoxic effects of five selected TKIs, namely erlotinib (ERL), dasatinib (DAS), nilotinib (NIL), regorafenib (REG), and sorafenib (SOR), using the in vitro zebrafish liver cell (ZFL) model. Cytotoxicity was determined using the MTS assay and propidium iodide (PI) live/dead staining by flow cytometry. DAS, SOR, and REG decreased ZFL cell viability dose- and time-dependently, with DAS being the most cytotoxic TKI studied. ERL and NIL did not affect viability at concentrations up to their maximum solubility; however, NIL was the only TKI that significantly decreased the proportion of PI negative cells as determined by the flow cytometry. Cell cycle progression analyses showed that DAS, ERL, REG, and SOR caused the cell cycle arrest of ZFL cells in the G0/G1 phase, with a concomitant decrease of cells in the S-phase fraction. No data could be obtained for NIL due to severe DNA fragmentation. The genotoxic activity of the investigated TKIs was evaluated using comet and cytokinesis block micronucleus (CBMN) assays. The dose-dependent induction of DNA single strand breaks was induced by NIL (≥2 µM), DAS (≥0.006 µM), and REG (≥0.8 µM), with DAS being the most potent. None of the TKIs studied induced micronuclei formation. These results suggest that normal non-target fish liver cells are sensitive to the TKIs studied in a concentration range similar to those previously reported for human cancer cell lines. Although the TKI concentrations that induced adverse effects in exposed ZFL cells are several orders of magnitude higher than those currently expected in the aquatic environment, the observed DNA damage and cell cycle effects suggest that residues of TKIs in the environment may pose a hazard to non-intentionally exposed organisms living in environments contaminated with TKIs.


Assuntos
Antineoplásicos , Hepatócitos , Animais , Humanos , Antineoplásicos/toxicidade , Hepatócitos/efeitos dos fármacos , Fígado , Pirimidinas/toxicidade , Sorafenibe/toxicidade , Peixe-Zebra
6.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36835492

RESUMO

The study aimed to investigate toxicity and the mechanism of toxicity of two Fusarium mycotoxins, deoxynivalenol (DON) and zearalenone (ZEA). DON and ZEA were applied to HepG2 cells as single compounds and in combination at low environmentally relevant concentrations. HepG2 cells were exposed to DON (0.5, 1, and 2 µM), ZEA (5, 10, and 20 µM) or their combinations (1 µM DON + 5 µM ZEA, 1 µM DON + 10 µM ZEA and 1 µM DON + 20 µM ZEA) for 24 h and cell viability, DNA damage, cell cycle and proliferation were assessed. Both mycotoxins reduced cell viability, however, combined treatment with DON and ZEA resulted in higher reduction of cell viability. DON (1 µM) induced primary DNA damage, while DON (1 µM) in combination with higher ZEA concentrations showed antagonistic effects compared to DON alone at 1 µM. DON arrested HepG2 cells in G2 phase and significantly inhibited cell proliferation, while ZEA had no significant effect on cell cycle. The combined treatment with DON and ZEA arrested cells in G2 phase to a higher extend compared to treatment with single mycotoxins. Potentiating effect observed after DON and ZEA co-exposure at environmentally relevant concentrations indicates that in risk assessment and setting governments' regulations, mixtures of mycotoxins should be considered.


Assuntos
Micotoxinas , Zearalenona , Humanos , Zearalenona/toxicidade , Células Hep G2 , Micotoxinas/farmacologia , Ciclo Celular , Proliferação de Células , DNA/farmacologia
7.
Environ Int ; 171: 107721, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36580735

RESUMO

Bisphenol A (BPA) is one of the most widely used and versatile chemical compounds in polymer additives and epoxy resins for manufacturing a range of products for human applications. It is known as endocrine disruptor, however, there is growing evidence that it is genotoxic. Because of its adverse effects, the European Union has restricted its use to protect human health and the environment. As a result, the industry has begun developing BPA analogues, but there are not yet sufficient toxicity data to claim that they are safe. We investigated the adverse toxic effects of BPA and its analogues (BPS, BPAP, BPAF, BPFL, and BPC) with emphasis on their cytotoxic and genotoxic activities after short (24-h) and prolonged (96-h) exposure in in vitro hepatic three-dimensional cell model developed from HepG2 cells. The results showed that BPFL and BPC (formed by an additional ring system) were the most cytotoxic analogues that affected cell viability, spheroid surface area and morphology, cell proliferation, and apoptotic cell death. BPA, BPAP, and BPAF induced DNA double-strand break formation (γH2AX assay), whereas BPAF and BPC increased the percentage of p-H3-positive cells, indicating their aneugenic activity. All BPs induced DNA single-strand break formation (comet assay), with BPAP (≥0.1 µM) being the most effective and BPA and BPC the least effective (≥1 µM) under conditions applied. The results indicate that not all of the analogues studied are safer alternatives to BPA and thus more in-depth research is urgently needed to adequately evaluate the risks of BPA analogues and assess their safety for humans.


Assuntos
Compostos Benzidrílicos , Fenóis , Humanos , Compostos Benzidrílicos/toxicidade , Compostos Benzidrílicos/química , Fenóis/toxicidade , Fenóis/química , Células Hep G2 , DNA
8.
Chemosphere ; 291(Pt 1): 132805, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34767844

RESUMO

3D spheroids developed from HepG2 cells were used as a biosensor-like system for the detection of (geno)toxic effects induced by chemicals. Benzo(a)pyrene (B(a)P) and amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) with well-known mechanisms of action were used for system validation. HepG2 spheroids grown for 3 days were exposed to BaP and PhIP for 24 and 72 h. The growth and viability of spheroids were monitored by planimetry and Live/Dead staining of cells. Multi-parametric flow cytometric analysis was applied for simultaneous detection of specific end-effects including cell cycle analysis (Hoechst staining), cell proliferation (KI67 marker), and DNA double-strand breaks (ℽH2AX) induced by genotoxic compounds. Depending on the exposure concentration/time, BaP reduced spheroid growth, affected cell proliferation by arresting cells in S and G2 phase and induced DNA double-strand breaks (DSB). Simultaneous staining of ℽH2AX formation and cell cycle analysis revealed that after BaP (10 µM; 24 h) exposure 60% of cells in G0/G1 phase had DNA DSB, while after 72 h only 20% of cells contained DSB indicating efficient repair of DNA lesions. PhIP did not influence the spheroid size whereas accumulation of cells in the G2 phase occurred after both treatment times. The evaluation of DNA damage revealed that at 200 µM PhIP 50% of cells in G0/G1 phase had DNA DSB, which after 72-h exposure dropped to 40%, showing lower repair capacity of PhIP-induced DSB compared to BaP-induced. The developed approach using simultaneous detection of several parameters provides mechanistic data and thus contributes to more reliable genotoxicity assessment of chemicals as a high-content screening tool.


Assuntos
Benzo(a)pireno , Técnicas Biossensoriais , Benzo(a)pireno/toxicidade , Dano ao DNA , Células Hep G2 , Humanos
9.
Foods ; 10(6)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207931

RESUMO

The present study addresses the chemoprotective effects of xanthohumol (XN), a prenylated flavonoid found in the female inflorescences (hops) of the plant Humulus lupulus L., against the carcinogenic food contaminant aflatoxin B1 (AFB1). The chemical reactions of XN and its derivatives (isoxanthohumol (IXN), 8-prenylnaringenin (8-PN), and 6-prenylnaringenin (6-PN)) with the AFB1 metabolite, aflatoxin B1 exo-8,9-epoxide (AFBO), were investigated in silico, by calculating activation free energies (ΔG‡) at the Hartree-Fock level of theory in combination with the 6-311++G(d,p) basis set and two implicit solvation models. The chemoprotective effects of XN were investigated in vitro in the metabolically competent HepG2 cell line, analyzing its influence on AFB1-induced cytotoxicity using the MTS assay, genotoxicity using the comet and γH2AX assays, and cell cycle modulation using flow cytometry. Our results show that the ΔG‡ required for the reactions of XN and its derivatives with AFBO are comparable to the ΔG‡ required for the reaction of AFBO with guanine, indicating that XN, IXN, 8-PN, and 6-PN could act as scavengers of AFBO, preventing DNA adduct formation and DNA damage induction. This was also reflected in the results from the in vitro experiments, where a reduction in AFB1-induced cytotoxicity and DNA single-strand and double-strand breaks was observed in cells exposed to combinations of AFB1 and XN, highlighting the chemoprotective effects of this phytochemical.

10.
Methods Mol Biol ; 2273: 173-188, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33604853

RESUMO

Cells cultured in a monolayer have been a central tool in molecular and cell biology, toxicology, biochemistry, and so on. Therefore, most methods for adherent cells in cell biology are tailored to this format of cell culturing. Limitations and disadvantages of monolayer cultures, however, have resulted in the ongoing development of advanced cell culturing techniques. One such technique is culturing cells as multicellular spheroids, that had been shown to mimic the physiological conditions found in vivo more accurately. This chapter presents a novel method for separation of the spheroid rim and core in mature spheroids (>21 days) for further analysis using advanced molecular biology techniques such as flow cytometry, viability estimations, comet assay, transcriptomics, proteomics and lipidomic. This fast and gentle disassembly of intact spheroids into rim and core fractions, and further into viable single-cell suspension provides an opportunity to bridge the gap from 3D cell culture to current state-of-the-art analysis methods.


Assuntos
Biologia Computacional/métodos , Esferoides Celulares/citologia , Técnicas de Cultura de Células/métodos , Ensaio Cometa/métodos , Citometria de Fluxo/métodos , Genômica/métodos , Células Hep G2 , Humanos , Lipidômica/métodos , Proteômica/métodos , Esferoides Celulares/metabolismo , Transcriptoma
11.
Sci Total Environ ; 755(Pt 2): 143255, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33187710

RESUMO

The major weakness of the current in vitro genotoxicity test systems is the inability of the indicator cells to express metabolic enzymes needed for the activation and detoxification of genotoxic compounds, which consequently can lead to misleading results. Thus, there is a significant emphasis on developing hepatic cell models, including advanced in vitro three-dimensional (3D) cell-based systems, which better imitate in vivo cell behaviour and offer more accurate and predictive data for human exposures. In this study, we developed an approach for genotoxicity testing with 21-day old spheroids formed from human hepatocellular carcinoma cells (HepG2/C3A) using the dynamic clinostat bioreactor system (CelVivo BAM/bioreactor) under controlled conditions. The spheroids were exposed to indirect-acting genotoxic compounds, polycyclic aromatic hydrocarbon [PAH; benzo(a) pyrene B(a)P], and heterocyclic aromatic amine [PhIP]) at non-cytotoxic concentrations for 24 and 96 h. The results showed that both environmental pollutants B(a)P and PhIP significantly increased the level of DNA strand breaks assessed by the comet assay. Further, the mRNA level of selected genes encoding metabolic enzymes from phase I and II, and DNA damage responsive genes was determined (qPCR). The 21-day old spheroids showed higher basal expression of genes encoding metabolic enzymes compared to monolayer culture. In spheroids, B(a)P or PhIP induced compound-specific up-regulation of genes implicated in their metabolism, and deregulation of genes implicated in DNA damage and immediate-early response. The study demonstrated that this model utilizing HepG2/C3A spheroids grown under dynamic clinostat conditions represents a very sensitive and promising in vitro model for genotoxicity and environmental studies and can thus significantly contribute to a more reliable assessment of genotoxic activities of pure chemicals, and complex environmental samples even at very low for environmental exposure relevant concentrations.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ensaio Cometa , Dano ao DNA , Humanos , Testes de Mutagenicidade , Mutagênicos/toxicidade
12.
Cells ; 9(12)2020 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260628

RESUMO

In genetic toxicology, there is a trend against the increased use of in vivo models as highlighted by the 3R strategy, thus encouraging the development and implementation of alternative models. Two-dimensional (2D) hepatic cell models, which are generally used for studying the adverse effects of chemicals and consumer products, are prone to giving misleading results. On the other hand, newly developed hepatic three-dimensional (3D) cell models provide an attractive alternative, which, due to improved cell interactions and a higher level of liver-specific functions, including metabolic enzymes, reflect in vivo conditions more accurately. We developed an in vitro 3D cell model from the human hepatocellular carcinoma (HepG2) cell line. The spheroids were cultured under static conditions and characterised by monitoring their growth, morphology, and cell viability during the time of cultivation. A time-dependent suppression of cell division was observed. Cell cycle analysis showed time-dependent accumulation of cells in the G0/G1 phase. Moreover, time-dependent downregulation of proliferation markers was shown at the mRNA level. Genes encoding hepatic markers, metabolic phase I/II enzymes, were time-dependently deregulated compared to monolayers. New knowledge on the characteristics of the 3D cell model is of great importance for its further development and application in the safety assessment of chemicals, food products, and complex mixtures.


Assuntos
Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Regulação para Baixo/fisiologia , Células Hep G2 , Hepatócitos/patologia , Humanos , Fígado/patologia , Esferoides Celulares/patologia
13.
Toxins (Basel) ; 12(12)2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33302339

RESUMO

Simultaneous occurrence of cylindrospermopsin (CYN) and microcystin-LR (MCLR) has been reported in the aquatic environment and thus human exposure to such mixtures is possible. As data on the combined effects of CYN/MCLR are scarce, we aimed to investigate the adverse effects related to genotoxic activities induced by CYN (0.125, 0.25 and 0.5 µg/mL) and MCLR (1 µg/mL) as single compounds and their combinations in HepG2 cells after 24 and 72 h exposure. CYN and CYN/MCLR induced DNA double-strand breaks after 72 h exposure, while cell cycle analysis revealed that CYN and CYN/MCLR arrested HepG2 cells in G0/G1 phase. Moreover, CYN and the combination with MCLR upregulated CYP1A1 and target genes involved in DNA-damage response (CDKN1A, GADD45A). Altogether, the results showed that after 72 h exposure genotoxic activity of CYN/MCLR mixture was comparable to the one of pure CYN. On the contrary, MCLR (1 µg/mL) had no effect on the viability of cells and had no influence on cell division. It did not induce DNA damage and did not deregulate studied genes after prolonged exposure. The outcomes of the study confirm the importance of investigating the combined effects of several toxins as the effects can differ from those induced by single compounds.


Assuntos
Alcaloides/toxicidade , Carcinoma Hepatocelular/metabolismo , Dano ao DNA/efeitos dos fármacos , Neoplasias Hepáticas/metabolismo , Toxinas Marinhas/toxicidade , Microcistinas/toxicidade , Alcaloides/química , Carcinoma Hepatocelular/tratamento farmacológico , Toxinas de Cianobactérias , Dano ao DNA/fisiologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Inibidores Enzimáticos/toxicidade , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Toxinas Marinhas/química , Microcistinas/química
14.
J Chem Inf Model ; 60(7): 3662-3678, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32484690

RESUMO

Human type II topoisomerases, molecular motors that alter the DNA topology, are a major target of modern chemotherapy. Groups of catalytic inhibitors represent a new approach to overcome the known limitations of topoisomerase II poisons such as cardiotoxicity and induction of secondary tumors. Here, we present a class of substituted 4,5'-bithiazoles as catalytic inhibitors targeting the human DNA topoisomerase IIα. Based on a structural comparison of the ATPase domains of human and bacterial type II topoisomerase, a focused chemical library of 4,5'-bithiazoles was assembled and screened to identify compounds that better fit the topology of the human topo IIα adenosine 5'-triphosphate (ATP) binding site. Selected compounds showed inhibition of human topo IIα comparable to that of the etoposide topo II drug, revealing a new class of inhibitors targeting this molecular motor. Further investigations showed that compounds act as catalytic inhibitors via competitive ATP inhibition. We also confirmed binding to the truncated ATPase domain of topo IIα and modeled the inhibitor molecular recognition with molecular simulations and dynophore models. The compounds also displayed promising cytotoxicity against HepG2 and MCF-7 cell lines comparable to that of etoposide. In a more detailed study with the HepG2 cell line, there was no induction of DNA double-strand breaks (DSBs), and the compounds were able to reduce cell proliferation and stop the cell cycle mainly in the G1 phase. This confirms the mechanism of action of these compounds, which differs from topo II poisons also at the cellular level. Substituted 4,5'-bithiazoles appear to be a promising class for further development toward efficient and potentially safer cancer therapies exploiting the alternative topo II inhibition paradigm.


Assuntos
Antineoplásicos , DNA Topoisomerases Tipo II , Catálise , Etoposídeo/toxicidade , Humanos , Inibidores da Topoisomerase II/farmacologia
15.
Environ Pollut ; 265(Pt B): 114965, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32559695

RESUMO

Cylindrospermopsin (CYN) is an emerging cyanotoxin increasingly being found in freshwater cyanobacterial blooms worldwide. Humans and animals are exposed to CYN through the consumption of contaminated water and food as well as occupational and recreational water activities; therefore, it represents a potential health threat. It exhibits genotoxic effects in metabolically active test systems, thus it is considered as pro-genotoxic. In the present study, the advanced 3D cell model developed from human hepatocellular carcinoma (HepG2) cells was used for the evaluation of CYN cyto-/genotoxic activity. Spheroids were formed by forced floating method and were cultured for three days under static conditions prior to exposure to CYN (0.125, 0.25 and 0.5 µg/mL) for 72 h. CYN influence on spheroid growth was measured daily and cell survival was determined by MTS assay and live/dead staining. The influence on cell proliferation, cell cycle alterations and induction of DNA damage (γH2AX) was determined using flow cytometry. Further, the expression of selected genes (qPCR) involved in the metabolism of xenobiotics, proliferation, DNA damage response, apoptosis and oxidative stress was studied. Results revealed that CYN dose-dependently reduced the size of spheroids and affected cell division by arresting HepG2 cells in G1 phase of the cell cycle. No induction of DNA double strand breaks compared to control was determined at applied conditions. The analysis of gene expression revealed that CYN significantly deregulated genes encoding phase I (CYP1A1, CYP1A2, CYP3A4, ALDH3A) and II (NAT1, NAT2, SULT1B1, SULT1C2, UGT1A1, UGT2B7) enzymes as well as genes involved in cell proliferation (PCNA, TOP2α), apoptosis (BBC3) and DNA damage response (GADD45a, CDKN1A, ERCC4). The advanced 3D HepG2 cell model due to its more complex structure and improved cellular interactions provides more physiologically relevant information and more predictive data for human exposure, and can thus contribute to more reliable genotoxicity assessment of chemicals including cyanotoxins.


Assuntos
Arilamina N-Acetiltransferase , Neoplasias Hepáticas , Alcaloides , Animais , Toxinas Bacterianas , Toxinas de Cianobactérias , Dano ao DNA , Células Hep G2 , Humanos , Toxinas Marinhas , Microcistinas , Uracila/análogos & derivados
16.
Bioorg Chem ; 99: 103828, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32315896

RESUMO

Cancer constitutes a group of diseases linked to abnormal cell growth that can potentially spread to other parts of the body and is one of the most common causes of death. The molecular motors - DNA topoisomerases - that enable topological changes of the DNA molecule are one of the most established targets of cancer therapies. Due to known limitations of established topo II poisons such as cardiotoxicity, induction of secondary malignancies and recognized cancer cell resistance, an emerging group of catalytic topo II inhibitors attempts to circumvent these challenges. Currently, this approach comprises several subgroups of mechanistically diverse inhibitors, one of which are compounds that act by binding to their ATPase domain. In this study we have designed, synthesized and characterized a new series of 3,5-substituted 1,2,4-oxadiazoles that act as catalytic inhibitors of human topo IIα. The introduction of the substituted rigid substitutions on the oxadiazole backbone was intended to enhance the interactions with the ATP binding site. In the inhibition assays selected compounds revealed a new class of catalytic inhibitors targeting this molecular motor and showed binding to the isolated topo IIα ATPase domain. The predicted inhibitor binding geometries were evaluated in molecular dynamics simulations and subsequently dynophore models were derived, which provided a deeper insight into molecular recognition with its macromolecular target. Selected compounds also displayed in vitro cytotoxicity on the investigated MCF-7 cancer cell line and did not induce double-strand breaks (DSB), thus displaying a mechanism of action diverse from the topo II poisons also on the cellular level. The substituted oxadiazoles thus comprise a chemical class of interesting compounds that are synthetically fully amenable for further optimization to anticancer drugs.


Assuntos
Antineoplásicos/farmacologia , DNA Topoisomerases Tipo II/metabolismo , Desenho de Fármacos , Oxidiazóis/farmacologia , Inibidores da Topoisomerase II/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Biocatálise , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Células MCF-7 , Modelos Moleculares , Estrutura Molecular , Oxidiazóis/síntese química , Oxidiazóis/química , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/química
17.
Arch Toxicol ; 93(11): 3321-3333, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31542801

RESUMO

The evaluation of genotoxicity plays an important role within hazard identification and risk assessment of chemicals and consumer products. For genotoxicity assessment, in vitro hepatic cells are often used as they have retained certain level of xenobiotic metabolic activity. However, current protocols are designed for the use on 2D monolayer models that are associated with several limitations due to the lack of numerous biological functions, which results in the loss of many hepatic properties. In this respect, an attractive alternative are three-dimensional (3D) models. The aim of our study was to develop physiologically more relevant 3D cell model (spheroids) from the human hepatocellular carcinoma (HepG2) cell line for genotoxicity testing. The spheroids were prepared by the forced floating method, which had been optimized for the production of a large number of uniform spheroids. The sensitivity of the spheroids to detect genotoxicity was determined by the comet assay after the exposure of spheroids to non-cytotoxic concentrations of model indirect acting genotoxic compounds, namely polycyclic aromatic hydrocarbon (B(a)P), mycotoxin (AFB1), two heterocyclic aromatic amines (PhIP and IQ) and a direct acting etoposide (ET). All five tested compounds concentration dependently induced DNA damage. Higher sensitivity of 3D cell model compared to 2D monolayer culture was noticed particularly for detection of the genotoxicity of the heterocyclic aromatic amines and BaP. Deregulation of mRNA expression (qPCR) by genotoxic compounds revealed that HepG2 cells in 3D express important genes encoding phase I and II metabolic enzymes, as well as DNA damage responsive genes in an inducible form. The newly developed HepG2 3D model shows improved sensitivity for detecting genotoxic compounds compared to 2D cultures and can provide a suitable experimental model for genotoxicity assessment.


Assuntos
Carcinoma Hepatocelular/patologia , Técnicas de Cultura de Células/métodos , Ensaio Cometa/métodos , Neoplasias Hepáticas/patologia , Mutagênicos/toxicidade , Esferoides Celulares/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Dano ao DNA , Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Esferoides Celulares/patologia
18.
Eur J Med Chem ; 175: 330-348, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31096154

RESUMO

Human DNA topoisomerases represent one of the key targets of modern chemotherapy. An emerging group of catalytic inhibitors of human DNA topoisomerase IIα comprises a new paradigm directed to circumvent the known limitations of topoisomerase II poisons such as cardiotoxicity and induction of secondary tumors. In our previous studies, 4,6-substituted-1,3,5-triazin-2(1H)-ones were discovered as catalytic inhibitors of topo IIα. Here, we report the results of our efforts to optimize several properties of the initial chemical series that did not exhibit cytotoxicity on cancer cell lines. Using an optimized synthetic route, a focused chemical library was designed aimed at further functionalizing substituents at the position 4 of the 1,3,5-triazin-2(1H)-one scaffold to enable additional interactions with the topo IIα ATP binding site. After virtual screening, selected 36 analogues were synthesized and experimentally evaluated for human topo IIα inhibition. The optimized series displayed improved inhibition of topo IIα over the initial series and the catalytic mode of inhibition was confirmed for the selected active compounds. The optimized series also showed cytotoxicity against HepG2 and MCF-7 cell lines and did not induce double-strand breaks, thus displaying a mechanism of action that differs from the topo II poisons on the cellular level. The new series represents a new step in the development of the 4,6-substituted-1,3,5-triazin-2(1H)-one class towards novel efficient anticancer therapies utilizing the catalytic topo IIα inhibition paradigm.


Assuntos
DNA Topoisomerases Tipo II/efeitos dos fármacos , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/farmacologia , Triazinas/química , Triazinas/farmacologia , Trifosfato de Adenosina/metabolismo , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Catálise , Quebras de DNA de Cadeia Dupla , Células Hep G2 , Histonas/metabolismo , Humanos , Células MCF-7 , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA