Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36984360

RESUMO

Nanocomposite films based on macrocyclic compounds (zinc phthalocyanine (ZnPc) and 5,10,15,20-tetra(4-pyridyl) 21H,23H-porphyrin (TPyP)) and metal oxide nanoparticles (ZnO or CuO) were deposited by matrix-assisted pulsed laser evaporation (MAPLE). 1,4-dioxane was used as a solvent in the preparation of MAPLE targets that favor the deposition of films with a low roughness, which is a key feature for their integration in structures for optoelectronic applications. The influence of the addition of ZnO nanoparticles (~20 nm in size) or CuO nanoparticles (~5 nm in size) in the ZnPc:TPyP mixture and the impact of the added metal oxide amount on the properties of the obtained composite films were evaluated in comparison to a reference layer based only on an organic blend. Thus, in the case of nanocomposite films, the vibrational fingerprints of both organic compounds were identified in the infrared spectra, their specific strong absorption bands were observed in the UV-Vis spectra, and a quenching of the TPyP emission band was visible in the photoluminescence spectra. The morphological analysis evidenced agglomerated particles on the composite film surface, but their presence has no significant impact on the roughness of the MAPLE deposited layers. The current density-voltage (J-V) characteristics of the structures based on the nanocomposite films deposited by MAPLE revealed the critical role played by the layer composition and component ratio, an improvement in the electrical parameters values being achieved only for the films with a certain type and optimum amount of metal oxide nanoparticles.

2.
Nanomaterials (Basel) ; 12(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36500855

RESUMO

The properties of organic heterostructures with mixed layers made of arylenevinylene-based polymer donor and non-fullerene perylene diimide acceptor, deposited using Matrix Assisted Pulsed Laser Evaporation on flat Al and nano-patterned Al electrodes, were investigated. The Al layer electrode deposited on the 2D array of cylindrical nanostructures with a periodicity of 1.1 µm, developed in a polymeric layer using UV-Nanoimprint Lithography, is characterized by an inflorescence-like morphology. The effect of the nanostructuring on the optical and electrical properties was studied by comparison with those of the heterostructures based on a mixed layer with fullerene derivative acceptor. The low roughness of the mixed layer deposited on flat Al was associated with high reflectance. The nano-patterning, which was preserved in the mixed layer, determining the light trapping by multiple scattering, correlated with the high roughness and led to lower reflectance. A decrease was also revealed in photoluminescence emission both at UV and Vis excitation of the mixed layer, with the non-fullerene acceptor deposited on nano-patterned Al. An injector contact behavior was highlighted for all Al/mixed layer/ITO heterostructures by I-V characteristics in dark. The current increased, independently of acceptor (fullerene or non-fullerene), in the heterostructures with nano-patterned Al electrodes for shorter conjugation length polymer donors.

3.
Nanomaterials (Basel) ; 12(24)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36558348

RESUMO

The paper considers the new effects of the nanoscale state of matter, which open up prospects for the development of electronic devices using new physical principles. The contacts of chemically homogeneous nanoparticles of yttrium-stabilized zirconium oxide (ZrO2­x mol% Y2O3, x = 0, 3, 4, 8; YSZ) with different sizes of 7.5 nm and 9 nm; 7.5 nm and 11 nm; and 7.5 nm and 14 nm, respectively, was studied on direct current using nanostructured objects in the form of compacts obtained by high-hydrostatic pressure (HP-compacts of 300MPa). A unique size effect of the nonlinear (rectifying-type contact) dependence of the electrical properties (in the region U < 2.5 V, I ≤ 2.7 mA) of the contact of different-sized YSZ nanoparticles of the same chemical composition is revealed, which indicates the possibility of creating semiconductor structures of a new type (homogeneous electronics). The electronic structure of the near-surface regions of nanoparticles of studied oxide materials and the possibility of obtaining specifically rectifying properties of the contacts were studied theoretically. Models of surface states of the Tamm-type are constructed considering the Coulomb long-range action. The discovered energy variance and its dependence on the curvature of the surface of nanoparticles made it possible to study the conditions for the formation of a contact potential difference in cases of nanoparticles of the same radius (synergistic effect), different radii (doped and undoped variants), as well as to discover the possibility of describing a group of powder particles within the Anderson model. The determined effect makes it possible to solve the problem of diffusion instability of semiconductor heterojunctions and opens up prospects for creating electronic devices with a fundamentally new level of properties for use in various fields of the economy and breakthrough critical technologies.

4.
Nanomaterials (Basel) ; 12(11)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35683639

RESUMO

The dimensional effect of electric charge storage with a density of up to 270 µF/g by the hydrated ZrO2-nanoparticles system was determined. It was found that the place of localization of different charge carriers is the generalized heterophase boundary-nanoparticles surface. The supposed mechanism of the effect was investigated using the theory of dispersed systems, the band theory, and the theory of contact phenomena in semiconductors, which consists of the formation of localized electronic states in the nanoparticle material due to donor-acceptor interaction with the adsorption ionic atmosphere. The effect is relevant for modern nanoelectronics, microsystem technology, and printed electronics because it allows overcoming the basic physical restrictions on the size, temperature, and operation frequency of the device, caused by leakage currents.

5.
Materials (Basel) ; 16(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36614483

RESUMO

Lately, there is a growing interest in organic photovoltaic (OPV) cells due to the organic materials' properties and compatibility with various types of substrates. However, their efficiencies are low relative to the silicon ones; therefore, other ways (i.e., electrode micron/nanostructuring, synthesis of new organic materials, use of additives) to improve their performances are still being sought. In this context, we studied the behavior of the common organic bulk heterojunction (P3HT:PC70BM) deposited by matrix-assisted pulsed laser evaporation (MAPLE) with/without 0.3% of 1,8-diiodooctane (DIO) additive on flat and micro-patterned ITO substrates. The obtained results showed that in the MAPLE process, a small quantity of additive can modify the morphology of the organic films and decrease their roughness. Besides the use of the additive, the micro-patterning of the electrode leads to a greater increase in the absorption of the studied photovoltaic structures. The inferred values of the filling factors for the measured cells in ambient conditions range from 19% for the photovoltaic structures with no additive and without substrate patterning to 27% for the counterpart structures with patterning and a small quantity of additive.

6.
Materials (Basel) ; 14(24)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34947285

RESUMO

We investigated the optical and electrical properties of flexible single and bi-layer organic heterostructures prepared by vacuum evaporation with a p-type layer of arylenevinylene oligomers, based on carbazole, 3,3' bis(N hexylcarbazole)vinylbenzene = L13, or triphenylamine, 1,4 bis [4 (N,N' diphenylamino)phenylvinyl] benzene = L78, and an n-type layer of 5,10,15,20-tetra(4-pyrydil)21H,23H-porphyne = TPyP. Transparent conductor films of Al-doped ZnO (AZO) with high transparency, >90% for wavelengths > 400 nm, and low resistivity, between 6.9 × 10-4 Ω·cm and 23 × 10-4 Ω·cm, were deposited by pulsed laser deposition on flexible substrates of polyethylene terephthalate (PET). The properties of the heterostructures based on oligomers and zinc phthalocyanine (ZnPc) were compared, emphasizing the effect of the surface morphology. The measurements revealed a good absorption in the visible range of the PET/AZO/arylenevinylene oligomer/TPyP heterostructures and a typical injection contact behavior with linear (ZnPc, L78) or non-linear (L13) J-V characteristics in the dark, at voltages < 0.4 V. The heterostructure PET/AZO/L78/TPyP/Al showed a current density of ~1 mA/cm2 at a voltage of 0.3 V. The correlation between the roughness exponent, evaluated from the height-height correlation function, grain shape, and electrical behavior was analyzed. Consequently, the oligomer based on triphenylamine could be a promising replacement of donor ZnPc in flexible electronic applications.

7.
Nanomaterials (Basel) ; 11(9)2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34578646

RESUMO

This study presents the design and manufacture of metasurface lenses optimized for focusing light with 1.55 µm wavelength. The lenses are fabricated on silicon substrates using electron beam lithography, ultraviolet-nanoimprint lithography and cryogenic deep reactive-ion etching techniques. The designed metasurface makes use of the geometrical phase principle and consists of rectangular pillars with target dimensions of height h = 1200 nm, width w = 230 nm, length l = 354 nm and periodicity p = 835 nm. The simulated efficiency of the lens is 60%, while the master lenses obtained by using electron beam lithography are found to have an efficiency of 45%. The lenses subsequently fabricated via nanoimprint are characterized by an efficiency of 6%; the low efficiency is mainly attributed to the rounding of the rectangular nanostructures during the pattern transfer processes from the resist to silicon due to the presence of a thicker residual layer.

8.
Nanotechnology ; 32(41)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34214995

RESUMO

The discovery of multifunctional properties related to electro-activity of organic systems of biomolecules is important for a variety of applications, especially for devices in the realm of biocompatible sensors and/or bioactuators. A further step towards such applications is to prepare thin films with the required properties. Here, the investigation is focused on the characterization of films of guanine and cytosine nucleobases, prepared by thermal evaporation-an industrial accessible deposition technique. The cytosine films have an orthorhombic non-centrosymmetric structure and grow in two interconnected nanostructured fractal patterns, of nearly equal proportion. Piezoresponse force microscopy images acquired at room temperature on the cytosine films display large zones with antiparallel alignment of the vertical components of the polarization vector. Guanine films have a dense nano-grained morphology. Our studies reveal electrical polarization switching effects which can be related to ferroelectricity in the films of guanine molecules. Characteristic ferroelectric polarization-electric-field hysteresis loops showing large electrical polarization are observed at low temperatures up to 200 K. Above this temperature, the guanine films have a preponderant paraelectric phase containing residual or locally induced nano-scopic ferroelectric domains, as observed by piezoresponse force microscopy at room temperature.

9.
Nanomaterials (Basel) ; 10(12)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33261138

RESUMO

The matrix-assisted pulsed laser evaporation (MAPLE) technique was used for depositing thin films based on a recently developed conjugated polymer, poly[2,5-(2-octyldodecyl)-3,6-diketopyrrolopyrrole-alt-5,5-(2,5-di(thien-2-yl)thieno [3,2-b]thiophene)] (DPP-DTT) and fullerene C60 blends. The targets used in the MAPLE process were obtained by freezing chloroform solutions with different DPP-DTT:C60 weight ratios, with the MAPLE deposition being carried at a low laser fluence, varying the number of laser pulses. The structural, morphological, optical, and electrical properties of the DPP-DTT:C60 blend layers deposited by MAPLE were investigated in order to emphasize the influence of the DPP-DTT:C60 weight ratio and the number of laser pulses on these features. The preservation of the chemical structure of both DPP-DTT and C60 during the MAPLE deposition process is confirmed by the presence of their vibrational fingerprints in the FTIR spectra of the organic thin films. The UV-VIS and photoluminescence spectra of the obtained organic layers reveal the absorption bands attributed to DPP-DTT and the emission bands associated with C60, respectively. The morphology of the DPP-DTT:C60 blend films consists of aggregates and fibril-like structures. Regardless the DPP-DTT:C60 weight ratio and the number of laser pulses used during the MAPLE process, the current-voltage characteristics recorded, under illumination, of all structures developed on the MAPLE deposited layers evidenced a photovoltaic cell behavior. The results proved that the MAPLE emerges as a viable technique for depositing thin films based on conjugated polymers featured by a complex structure that can be further used to develop devices for applications in the solar cell area.

10.
Nanomaterials (Basel) ; 10(3)2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32150846

RESUMO

Matrix-assisted pulsed laser evaporation (MAPLE) was used to deposit hybrid nanocomposite thin films based on cobalt phthalocyanine (CoPc), C60 fullerene and ZnO nanoparticles. The inorganic nanoparticles, with a size of about 20 nm, having the structural and optical properties characteristic of ZnO, were chemically synthesized by a simple precipitation method. Furthermore, ZnO nanoparticles were dispersed in a dimethyl sulfoxide solution in which CoPc and C60 had been dissolved, ready for the freezing MAPLE target. The effect of the concentration of ZnO nanoparticles on the structural, morphological, optical and electrical properties of the CoPc:C60:ZnO hybrid nanocomposite layers deposited by MAPLE was evaluated. The infrared spectra of the hybrid nanocomposite films confirm that the CoPc and C60 preserve their chemical structure during the laser deposition process. The CoPc optical signature is recognized in the ultraviolet-visible (UV-Vis) spectra of the obtained layers, these being dominated by the absorption bands associated to this organic compound while the ZnO optical fingerprint is identified in the photoluminescence spectra of the prepared layers, these disclosing the emission bands linked to this inorganic semiconductor. The hybrid nanocomposite layers exhibit globular morphology, which is typical for the thin films deposited by MAPLE. Current-voltage (J-V) characteristics of the structures developed on CoPc:C60:ZnO layers reveal that the addition of an appropriate amount of ZnO nanoparticles in the CoPc:C60 mixture leads to a more efficient charge transfer between the organic and inorganic components. Due to their photovoltaic effect, structures featuring such hybrid nanocomposite thin films deposited by MAPLE can have potential applications in the field of photovoltaic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA