Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Phytoremediation ; : 1-11, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38069676

RESUMO

Phytoremediation is a low-cost and sustainable green technology that uses plants to remove organic and inorganic pollutants from aquatic environments. The aim of this study was to investigate the phytoextraction, phytoaccumulation, and phytotransformation of three fluoroquinolones (FQs) (ciprofloxacin [CIP], enrofloxacin [ENF], and levofloxacin [LVF]) by Japanese radish (Raphanus sativus var. longipinnatus) and duckweed (Lemma minor). Determination of FQs and identification of their transformation products (TPs) were performed using ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS). Inter-tissue translocation of FQs in Japanese radish tissues depended on their initial concentration in the medium. CIP (IT = 14.4) and ENF (IT = 17.0) accumulated mainly in radish roots, while LVF in leaves (IT = 230.8) at an initial concentration of 10 µg g-1. CIP (2,104 ng g-1) was detected in the highest concentration, followed by ENF (426.3 ng g-1) and LVF (273.3 ng g-1) in the tissues of both plants. FQs' bioaccumulation factors were significantly higher for duckweed (1.490-18.240) than Japanese radish (0.027-0.103). The removal of FQs from water using duckweed was mainly due to their photolysis and hydrolysis than plant sorption. In the screening, analysis detected 29 FQ TPs. The biotransformation pathways of FQs are described in detail, and the factors that influence their formation are indicated.


This study has presented the efficiency of fluoroquinolone (FQ) residues phytoextraction from water by two plant species (water duckweed, Japanese radish). The use of two plant species allowed for a holistic study of the FQ phytoremediation process by determining the efficiency of extraction, tissue distribution, bioaccumulation tendency, and biotransformation. The research gap regarding FQ transformation products in the phytoremediation process and the factors determining their formation has been filled. This study indicated that duckweed can be used with great efficiency to purify water from FQ contamination.

2.
Environ Sci Pollut Res Int ; 30(52): 112922-112942, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37843710

RESUMO

Sulfonamides circulating in the environment lead to disturbances in food chains and local ecosystems, but most importantly contribute to development of resistance genes, which generate problems with multidrug-resistant bacterial infections treatment. In urban areas, sources of sulfonamide distribution in soils have received comparatively less attention in contrast to rural regions, where animal-derived manure, used as a natural fertilizer, is considered the main source. The aim of this study was to determine eight sulfonamides (sulfadiazine, sulfamerazine, sulfamethazine, sulfamethizole, sulfamethoxazole, sulfapyridine, sulfathiazole, and sulfisoxazole) in environmental soil samples collected from urbanized regions in Silesian Voivodeship with increased animal activity. These soils were grouped according to the organic carbon content. It was necessary to develop versatile and efficient extraction and determination method to analyze selected sulfonamides in various soil types. The developed LC-MS/MS method for sulfonamides analyzing was validated. The obtained recoveries exceeded 45% for soil with medium organic carbon content and 88% for sample with a very low organic carbon content (arenaceous quartz). The obtained results show the high impact of organic matter on analytes adsorption in soil, which influences recovery. All eight sulfa drugs were determined in environmental samples in the concentration range 1.5-10.5 ng g-1. The transformation products of the analytes were also identified, and 29 transformation products were detected in 24 out of 27 extracts from soil samples.


Assuntos
Solo , Sulfonamidas , Animais , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Polônia , Ecossistema , Sulfanilamida , Carbono , Antibacterianos
3.
Artigo em Inglês | MEDLINE | ID: mdl-36768038

RESUMO

Antimicrobials and antibiotic resistance genes (ARGs) in substrates processed during anaerobic digestion in agricultural biogas plants (BPs) can reach the digestate (D), which is used as fertilizer. Antimicrobials and ARGs can be transferred to agricultural land, which increases their concentrations in the environment. The concentrations of 13 antibiotics in digestate samples from biogas plants (BPs) were investigated in this study. The abundance of ARGs encoding resistance to beta-lactams, tetracyclines, sulfonamides, fluoroquinolones, macrolide-lincosamide-streptogramin antibiotics, and the integrase genes were determined in the analyzed samples. The presence of cadmium, lead, nickel, chromium, zinc, and mercury was also examined. Antimicrobials were not eliminated during anaerobic digestion. Their concentrations differed in digestates obtained from different substrates and in liquid and solid fractions (ranging from 62.8 ng/g clarithromycin in the solid fraction of sewage sludge digestate to 1555.9 ng/L doxycycline in the liquid fraction of cattle manure digestate). Digestates obtained from plant-based substrates were characterized by high concentrations of ARGs (ranging from 5.73 × 102 copies/gDcfxA to 2.98 × 109 copies/gDsul1). The samples also contained mercury (0.5 mg/kg dry mass (dm)) and zinc (830 mg/kg dm). The results confirmed that digestate is a reservoir of ARGs (5.73 × 102 to 8.89 × 1010 copies/gD) and heavy metals (HMs). In addition, high concentrations of integrase genes (105 to 107 copies/gD) in the samples indicate that mobile genetic elements may be involved in the spread of antibiotic resistance. The study suggested that the risk of soil contamination with antibiotics, HMs, and ARGs is high in farms where digestate is used as fertilizer.


Assuntos
Mercúrio , Metais Pesados , Animais , Bovinos , Antibacterianos/farmacologia , Biocombustíveis , Fertilizantes , Zinco , Esgotos/química , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Esterco
4.
Artigo em Inglês | MEDLINE | ID: mdl-36554877

RESUMO

Phytoremediation is an environmentally friendly and economical method for removing organic contaminants from water. The purpose of the present study was to use Limnobium laevigatum for the phytoremediation of water from sulfamethoxazole (SMX) and trimethoprim (TRI) residues. The experiment was conducted for 14 days, in which the loss of the pharmaceuticals in water and their concentration in plant tissues was monitored. Determination of SMX and TRI was conducted using liquid chromatography coupled with tandem mass spectrometry. The results revealed that various factors affected the removal of the contaminants from water, and their bioaccumulation coefficients were obtained. Additionally, the transformation products of SMX and TRI were identified. The observed decrease in SMX and TRI content after 14 days was 96.0% and 75.4% in water, respectively. SMX removal mainly involved photolysis and hydrolysis processes, whereas TRI was mostly absorbed by the plant. Bioaccumulation coefficients of the freeze-dried plant were in the range of 0.043-0.147 for SMX and 2.369-2.588 for TRI. Nine and six transformation products related to SMX and TRI, respectively, were identified in water and plant tissues. The detected transformation products stemmed from metabolic transformations and photolysis of the parent compounds.


Assuntos
Hydrocharitaceae , Poluentes Químicos da Água , Sulfametoxazol/química , Trimetoprima/análise , Hydrocharitaceae/metabolismo , Água/química , Poluentes Químicos da Água/análise
5.
Sci Rep ; 12(1): 17529, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266434

RESUMO

Manure fertilization is the primary source of veterinary antimicrobials in the water-soil system. The research gap is the fate of antimicrobials after their release into the environment. This study aimed to provide a detailed and multi-faceted examination of fertilized cultivated fields using two types of manure (poultry and bovine) enriched with selected antimicrobials. The research focused on assessing the mobility and stability of antimicrobials in the water-soil system. Additionally, transformation products of antimicrobials in the environment were identified. The extraction (solid-phase extraction and/or solid-liquid extraction) and LC-MS/MS analysis procedures were developed to determine 14 antimicrobials in the soil and pore water samples. Ten out of fourteen antimicrobials were detected in manure-amended soil and pore water samples. The highest concentration in the soil was 109.1 ng g-1 (doxycycline), while in pore water, it was 186.6 ng L-1 (ciprofloxacin). Sixteen transformation products of antimicrobials were identified in the soil and soil-related pore water. The same transformation products were detected in both soil and soil pore water extracts, with significantly higher signal intensities observed in soil extracts than in water. Transformation products were formed in oxidation, carbonylation, and ring-opening reactions.


Assuntos
Anti-Infecciosos , Poluentes do Solo , Drogas Veterinárias , Bovinos , Animais , Esterco/análise , Solo , Cromatografia Líquida/métodos , Água/análise , Doxiciclina , Poluentes do Solo/análise , Monitoramento Ambiental , Antibacterianos/análise , Espectrometria de Massas em Tandem/métodos , Anti-Infecciosos/análise , Ciprofloxacina/análise
6.
Molecules ; 27(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35889250

RESUMO

Manure is a major source of soil and plant contamination with veterinary drugs residues. The aim of this study was to evaluate the uptake of 14 veterinary pharmaceuticals by parsley from soil fertilized with manure. Pharmaceutical content was determined in roots and leaves. Liquid chromatography coupled with tandem mass spectrometry was used for targeted analysis. Screening analysis was performed to identify transformation products in the parsley tissues. A solid-liquid extraction procedure was developed combined with solid-phase extraction, providing recoveries of 61.9-97.1% for leaves and 51.7-95.6% for roots. Four analytes were detected in parsley: enrofloxacin, tylosin, sulfamethoxazole, and doxycycline. Enrofloxacin was detected at the highest concentrations (13.4-26.3 ng g-1). Doxycycline accumulated mainly in the roots, tylosin in the leaves, and sulfamethoxazole was found in both tissues. 14 transformation products were identified and their distribution were determined. This study provides important data on the uptake and transformation of pharmaceuticals in plant tissues.


Assuntos
Poluentes Ambientais , Poluentes do Solo , Drogas Veterinárias , Doxiciclina/análise , Enrofloxacina/análise , Poluentes Ambientais/análise , Esterco/análise , Petroselinum , Solo/química , Poluentes do Solo/análise , Extração em Fase Sólida/métodos , Sulfametoxazol , Tilosina , Drogas Veterinárias/análise
7.
Molecules ; 26(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34946687

RESUMO

Metronidazole (MET) is a commonly detected contaminant in the environment. The compound is classified as poorly biodegradable and highly soluble in water. Heterogeneous photocatalysis is the most promoted water purification method due to the possibility of using sunlight and small amounts of a catalyst needed for the process. The aim of this study was to select conditions for photocatalytic removal of metronidazole from aquatic samples. The effect of catalyst type, mass, and irradiance intensity on the efficiency of metronidazole removal was determined. For this purpose, TiO2, ZnO, ZrO2, WO3, PbS, and their mixtures in a mass ratio of 1:1 were used. In this study, the transformation products formed were identified, and the mineralization degree of compound was determined. The efficiency of metronidazole removal depending on the type of catalyst was in the range of 50-95%. The highest MET conversion (95%) combined with a high degree of mineralization (70.3%) was obtained by using a mixture of 12.5 g TiO2-P25 + PbS (1:1; v/v) and running the process for 60 min at an irradiance of 1000 W m-2. Four MET degradation products were identified by untargeted analysis, formed by the rearrangement of the metronidazole and the C-C bond breaking.


Assuntos
Metronidazol/química , Processos Fotoquímicos , Purificação da Água , Catálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA