Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Dalton Trans ; 48(20): 6899-6909, 2019 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-31038147

RESUMO

A Cu(i) fully fluorinated O-donor monodentate alkoxide complex, K[Cu(OC4F9)2], was previously shown to form a trinuclear copper-dioxygen species with a {Cu3(µ3-O)2} core, TOC4F9, upon reactivity with O2 at low temperature. Herein is reported a significantly expanded kinetic and mechanistic study of TOC4F9 formation using stopped-flow spectroscopy. The TOC4F9 complex performs catalytic oxidase conversion of hydroquinone (H2Q) to benzoquinone (Q). TOC4F9 also demonstrated hydroxylation of 2,4-di-tert-butylphenolate (DBP) to catecholate, making TOC4F9 the first trinuclear species to perform tyrosinase (both monooxygenase and oxidase) chemistry. Resonance Raman spectra were also obtained for TOC4F9, to our knowledge, the first such spectra for any T species. The mechanism and substrate reactivity of TOC4F9 are compared to those of its bidentate counterpart, TpinF, formed from K[Cu(pinF)(PR3)]. The monodentate derivative has both faster initial formation and more diverse substrate reactivity.


Assuntos
Cobre/química , Hidrocarbonetos Fluorados/química , Monofenol Mono-Oxigenase/química , Catálise , Temperatura Baixa , Cinética , Ligantes , Modelos Moleculares , Estrutura Molecular , Oxirredução , Relação Estrutura-Atividade
2.
Angew Chem Int Ed Engl ; 57(29): 9154-9159, 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-29734490

RESUMO

Heteroscorpionate ligands of the bis(pyrazolyl)methane family have been applied in the stabilisation of terminal copper tosyl nitrenes. These species are highly active intermediates in the copper-catalysed direct C-H amination and nitrene transfer. Novel perfluoroalkyl-pyrazolyl- and pyridinyl-containing ligands were synthesized to coordinate to a reactive copper nitrene centre. Four distinct copper tosyl nitrenes were prepared at low temperatures by the reaction with SO2 tBuPhINTs and copper(I) acetonitrile complexes. Their stoichiometric reactivity has been elucidated regarding the imination of phosphines and the aziridination of styrenes. The formation and thermal decay of the copper nitrenes were investigated by UV/Vis spectroscopy of the highly coloured species. Additionally, the compounds were studied by cryo-UHR-ESI mass spectrometry and DFT calculations. In addition, a mild catalytic procedure has been developed where the copper nitrene precursors enable the C-H amination of cyclohexane and toluene and the aziridination of styrenes.

3.
Chemistry ; 23(62): 15738-15745, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-28850743

RESUMO

The electron-transfer abilities of the copper guanidinoquinoline (GUAqu) complexes [Cu(TMGqu)2 ]+/2+ and [Cu(DMEGqu)2 ]+/2+ (TMGqu=tetramethylguanidinoquinoline, DMEGqu=dimethylethylguanidinoquinoline) were examined in different solvents. The determination of the electron self-exchange rate based on the Marcus theory reveals the highest electron-transfer rate of copper complexes with pure N-donor ligands (k11 =1.2×104  s-1 m-1 in propionitrile). This is supported by an examination of the reorganisation energy of the complexes by using Eyring theory and DFT calculations. The low reorganisation energies in nitrile solvents correspond with the high electron-transfer rates of the complexes. Therefore, the [Cu(GUAqu)2 ]+/2+ complexes act as good entatic states model of copper enzymes. The structural influence of the complexes on the kinetic parameters shows that the TMGqu system possesses a higher electron-transfer rate than DMEGqu. Supporting DFT calculations give a closer insight into the kinetics and thermodynamics (Nelsen's four-point method and isodesmic reactions) of the electron transfer.


Assuntos
Complexos de Coordenação/química , Cobre/química , Modelos Moleculares , Quinolinas/química , Transporte de Elétrons , Cinética , Ligantes , Nitrilas/química , Oxirredução , Solventes/química , Espectrofotometria , Termodinâmica
4.
Chemistry ; 23(34): 8212-8224, 2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28236333

RESUMO

CuI complexes of the form K[(R3 P)Cu(pinF )], in which (pinF )2- is the bidentate, oxygen-donating ligand perfluoropinacolate, were synthesized and characterized. Low-temperature oxygenation of the K[(R3 P)Cu(pinF )(PR3 )] species resulted in a trisanionic bis(µ3 -oxo) trinuclear copper(II,II,III) core characterized by UV/Vis spectroscopy (λmax [nm] = 330, 535, 630), cryospray-ionization mass spectrometry, and X-band electron paramagnetic resonance spectroscopy (derivative resonance at 3300 G, Δms =2 at 1500 G). The kinetic behavior of the trimeric {Cu3 O2 } species was quantified by stopped-flow spectroscopy and the associated electronic structures were investigated by DFT calculations. An asymmetric {Cu3 O2 } species, As TpinF , which bears a structure similar to multicopper oxidases, forms prior to full formation of the symmetric trinuclear core, Sy TpinF . The trimer catalytically oxidizes para-hydroquinone to benzoquinone (a form of oxidase chemistry).


Assuntos
Caprilatos/química , Cobre/química , Fluorocarbonos/química , Glicóis/química , Oxirredutases/metabolismo , Oxigênio/química , Caprilatos/metabolismo , Catálise , Estabilidade de Medicamentos , Fluorocarbonos/metabolismo , Ligantes , Oxirredutases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA