Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(7)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39065556

RESUMO

Despite the numerous efforts to find an appropriate therapeutic modality, diabetic wounds remain a global unsolved problem. Therefore, our study aimed to develop a topical formulation loaded with pine tar and to investigate its wound-healing capacity. After phytochemical profiling of pine tar, an oil-in-water emulsion with 1% pine tar was prepared. The physical, chemical, and microbiological stability of prepared pine tar cream (PTC) was assessed during six months. Additionally, safety potential was examined in healthy rats, while wound-healing potential was accessed by creating excision wounds in diabetic rats. Diabetic animals were divided into four groups: untreated or topically treated with either the cream base, PTC, or silver sulfadiazine cream. Wound healing was monitored at the following time points (0, 7, 14, and 21 days) through macroscopic, biochemical, and histological examinations. Our PTC formula showed good physicochemical properties and remained stable and compatible for cutaneous application. PTC showed a remarkable increase in wound closure rate and led to attenuation of morphological alterations in skin samples. These findings were associated with significantly improved redox status and enhanced hydroxyproline levels in PTC relative to the untreated and cream base groups. Our results demonstrated that PTC might serve as a promising tool for the management of diabetic wounds.

2.
Can J Physiol Pharmacol ; 101(8): 413-424, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37207360

RESUMO

Porphyromonas gingivalis (P. gingivalis) is one of the most responsible periodontopathogenic bacteria in the development of periodontal disease (PD); however, its role in the development of other diseases still needs to be understood, specially its implications in the causation of cardiovascular pathogenesis. The aim of this study is to determine whether there is a direct association between P. gingivalis-induced PD with that of the development of cardiovascular disease, and whether a long-term administration of probiotic(s) could help improve the cardiovascular disease outcome. To test this hypothesis, we employed four different experimental groups of mice, designated as: Group I: Wild-type (WT) mice (C57BL/6J); Group II: Lactobacillus rhamnosus GG (LGG) (WT mice treated with a probiotic; LGG), Group III: PD (WT mice treated with P. gingivalis), and Group IV: PD + LGG (WT mice treated with P. gingivalis and LGG). PD was created by injecting 2 µL (i.e., 20 µg) of P. gingivalis lipopolysaccharide (LPS) intragingivally between the 1st and 2nd mandibular molars, two times a week for a total period of 6 weeks. The PD (LGG) intervention was done orally employing 2.5 × 105 CFU/day for a continuous period of 12 weeks. Immediately before the mice were sacrificed, echocardiography of the heart was performed, and after sacrifice, we collected serum samples, hearts, and the periodontal tissue. Histological assessment, cytokine analysis, and zymography of the cardiac tissue were performed. Results revealed inflammation of the heart muscle in the PD group that was marked by infiltration of neutrophils and monocytes, followed by fibrosis. Cytokine analysis of the mice sera revealed significantly elevated levels of tumor necrosis factor-α, IL-1ß, IL-6, and IL-17A in the PD group along with LPS-binding protein, and CD14. Most importantly, we observed elevated levels of P. gingivalis mRNAs in the heart tissues of PD mice. Zymographic analysis demonstrated matrix remodeling as revealed by increasing content of MMP-9 in the heart tissues of PD mice. Interestingly, LGG treatment was able to mitigate most of the pathological effects. The findings suggest that P. gingivalis could lead to cardiovascular system disorder and that probiotic intervention could alleviate, and most likely prevent bacteremia and its harmful effect(s) on the cardiovascular function.

4.
Molecules ; 27(17)2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36080296

RESUMO

Reconstruction of defects in the maxillofacial region following traumatic injuries, craniofacial deformities, defects from tumor removal, or infections in the maxillofacial area represents a major challenge for surgeons. Various materials have been studied for the reconstruction of defects in the maxillofacial area. Biodegradable metals have been widely researched due to their excellent biological properties. Magnesium (Mg) and Mg-based materials have been extensively studied for tissue regeneration procedures due to biodegradability, mechanical characteristics, osteogenic capacity, biocompatibility, and antibacterial properties. The aim of this review was to analyze and discuss the applications of Mg and Mg-based materials in reconstructive oral and maxillofacial surgery in the fields of guided bone regeneration, dental implantology, fixation of facial bone fractures and soft tissue regeneration.


Assuntos
Magnésio , Cirurgia Bucal , Regeneração Óssea , Magnésio/farmacologia , Osteogênese
5.
Contemp Clin Trials Commun ; 28: 100953, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35800034

RESUMO

Background: Clinical trials (CTs) are research investigations in which participants receive medical treatments, interventions, or tests to assess their safety and efficacy. Each planned clinical is registered through local or national medical agencies, which may differ in the amount of administrative and legal procedures. The objective of this study was to systematically analyze the registration process for clinical trials in Bosnia and Herzegovina in comparison to other Balkan countries. Methods: The search strategy was based using two online databases: Clinicaltrials.gov (CTGR) and Cortellis Clinical Trials Intelligence (cTi). Search engines included studies until 26th April 2021 and countries were compared in terms of the number of studies, status, type, funding, clinical phases and demographic data. Results: The total number of clinical trials from Bosnia and Herzegovina recorded in the CTGR database was 219, while the cTi database comprised 254 registered studies. The total number of reported clinical trials in CTGR and cTi databases were highest in Serbia (n = 1229, n = 1438), followed by Croatia (n = 1142, n = 1300), and Slovenia (n = 801, n = 948), respectively. However, the highest number of clinical trials per capita is in Slovenia (3.85e-4 in CTGR; 4.56e-4 in cTi), followed by Croatia (2.78e-4 in CTGR; 3.17e-4 in cTi), Serbia (1.41e-4 in CTGR; 1.65e-4 in cTi), and Bosnia and Herzegovina (0.67e-4 CTGR; 0.78e-4 cTi). Conclusion: Our analysis showed that Bosnia has the lowest number of clinical trials in the Balkans. Furthermore, the registration process is complex and longer than in developed countries. Since the healthcare system has been in a transition in the past decade, clinical trials are underutilized as a tool for the improvement of patient care. The clinical trial registration process could be improved by establishing an ethical committee at the state level and by enabling a parallel submission process to ethical committees and databases.

6.
Front Physiol ; 12: 625780, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33746772

RESUMO

The gut microbiome has a very important role in human health and its influence on the development of numerous diseases is well known. In this study, we investigated the effect of high fat diet (HFD) on the onset of dysbiosis, gingival blood flow decreases, and the periodontal matrix remodeling. We established a dysbiosis model (HFD group) and probiotic model by Lactobacillus rhamnosus GG (LGG) treatment for 12weeks. Fecal samples were collected 24h before mice sacrificing, while short chain fatty acids (SCFA) analysis, DNA extraction, and sequencing for metagenomic analysis were performed afterwards. After sacrificing the animals, we collected periodontal tissues and conducted comprehensive morphological and genetic analyses. While HFD reduced Bacteroidetes, SCFA, and gingival blood flow, this type of diet increased Firmicutes, lipopolysaccharide (LPS) binding protein, TLR4, pro-inflammatory cytokines (TNF-α, IL-1ß, and IL-6), matrix metalloproteinases (MMP-2 and MMP-9) expression, and also altered markers of bone resorption (OPG and RANKL). However, LGG treatment mitigated these effects. Thus, it was observed that HFD increased molecular remodeling via inflammation, matrix degradation, and functional remodeling and consequently cause reduced gingival blood flow. All of these changes may lead to the alveolar bone loss and the development of periodontal disease.

7.
Mol Cell Biochem ; 476(2): 663-673, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33074445

RESUMO

Epigenetic memory plays crucial roles in gene regulation. It not only modulates the expression of specific genes but also has ripple effects on transcription as well as translation of other genes. Very often an alteration in expression occurs either via methylation or demethylation. In this context, "1-carbon metabolism" assumes a special significance since its dysregulation by higher levels of homocysteine; Hcy (known as hyperhomocysteinemia; HHcy), a byproduct of "1-Carbon Metabolism" during methionine biosynthesis leads to serious implications in cardiovascular, renal, cerebrovascular systems, and a host of other conditions. Currently, the circular RNAs (circRNAs) generated via non-canonical back-splicing events from the pre-mRNA molecules are at the center stage for their essential roles in diseases via their epigenetic manifestations. We recently identified a circular RNA transcript (circGRM4) that is significantly upregulated in the eye of cystathionine ß-synthase-deficient mice. We also discovered a concurrent over-expression of the mGLUR4 receptor in the eyes of these mice. In brief, circGRM4 is selectively transcribed from its parental mGLUR4 receptor gene (GRM4) functions as a "molecular-sponge" for the miRNAs and results into excessive turnover of the mGLUR4 receptor in the eye in response to extremely high circulating glutamate concentration. We opine that this epigenetic manifestation potentially predisposes HHcy people to retinovascular malfunctioning.


Assuntos
Cistationina beta-Sintase/genética , Olho/irrigação sanguínea , Olho/metabolismo , Ácido Glutâmico/metabolismo , MicroRNAs/metabolismo , RNA Circular/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Cistationina beta-Sintase/metabolismo , Células Endoteliais/metabolismo , Epigênese Genética , Oftalmopatias/induzido quimicamente , Oftalmopatias/genética , Oftalmopatias/metabolismo , Oftalmopatias/patologia , Homocisteína/metabolismo , Humanos , Hiper-Homocisteinemia/genética , MicroRNAs/genética , RNA Circular/genética , Receptores de Glutamato Metabotrópico/genética , Doenças Vasculares/induzido quimicamente , Doenças Vasculares/genética , Doenças Vasculares/metabolismo , Doenças Vasculares/patologia
8.
Can J Physiol Pharmacol ; 99(1): 115-123, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32721223

RESUMO

Hyperhomocysteinemia (HHcy) affects bone remodeling, since a destructive process in cortical alveolar bone has been linked to it; however, the mechanism remains at large. HHcy increases proinflammatory cytokines viz. TNF-α, IL-1b, IL-6, and IL-8 that leads to a cascade that negatively impacts methionine metabolism and homocysteine cycling. Further, chronic inflammation decreases vitamins B12, B6, and folic acid that are required for methionine homocysteine homeostasis. This study aims to investigate a HHcy mouse model (cystathionine ß-synthase deficient, CBS+/-) for studying the potential pathophysiological changes, if any, in the periodontium (gingiva, periodontal ligament, cement, and alveolar bone). We compared the periodontium side-by-side in the CBS+/- model with that of the wild-type (C57BL/6J) mice. Histology and histomorphometry of the mandibular bone along with gene expression analyses were carried out. Also, proangiogenic proteins and metalloproteinases were studied. To our knowledge, this research shows, for the first time, a direct connection between periodontal disease during CBS deficiency, thereby suggesting the existence of disease drivers during the hyperhomocysteinemic condition. Our findings offer opportunities to develop diagnostics/therapeutics for people who suffer from chronic metabolic disorders like HHcy.


Assuntos
Cistationina beta-Sintase/deficiência , Hiper-Homocisteinemia/complicações , Periodontite/imunologia , Periodonto/patologia , Animais , Cistationina beta-Sintase/genética , Modelos Animais de Doenças , Ácido Fólico , Homocisteína/sangue , Homocisteína/metabolismo , Humanos , Hiper-Homocisteinemia/sangue , Hiper-Homocisteinemia/imunologia , Hiper-Homocisteinemia/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Estresse Oxidativo/imunologia , Periodontite/patologia , Periodonto/imunologia
9.
Can J Physiol Pharmacol ; 99(2): 161-170, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32721225

RESUMO

Research demonstrates that senescence is associated with tissue and organ dysfunction, and the eye is no exception. Sequelae arising from aging have been well defined as distinct clinical entities and vision impairment has significant psychosocial consequences. Retina and adjacent tissues like retinal pigmented epithelium and choroid are the key structures that are required for visual perception. Any structural and functional changes in retinal layers and blood retinal barrier could lead to age-related macular degeneration, diabetic retinopathy, and glaucoma. Further, there are significant oxygen gradients in the eye that can lead to excessive reactive oxygen species, resulting in endoplasmic reticulum and mitochondrial stress response. These radicals are source of functional and morphological impairment in retinal pigmented epithelium and retinal ganglion cells. Therefore, ocular diseases could be summarized as disturbance in the redox homeostasis. Hyperhomocysteinemia is a risk factor and causes vascular occlusive disease of the retina. Interestingly, hydrogen sulfide (H2S) has been proven to be an effective antioxidant agent, and it can help treat diseases by alleviating stress and inflammation. Concurrent glutamate excitotoxicity, endoplasmic reticulum stress, and microglia activation are also linked to stress; thus, H2S may offer additional interventional strategy. A refined understanding of the aging eye along with H2S biology and pharmacology may help guide newer therapies for the eye.


Assuntos
Envelhecimento/fisiologia , Olho/efeitos dos fármacos , Sulfeto de Hidrogênio/farmacologia , Envelhecimento/efeitos dos fármacos , Animais , Humanos
10.
Mol Cell Biochem ; 476(2): 507-512, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33030620

RESUMO

Naturally chromatin remodeling is highly organized, consisting of histone acetylation (opening/relaxation of the compact chromatin structure), DNA methylation (inhibition of the gene expression activity) and sequence rearrangement by shifting. All this is essentially required for proper "in-printing and off-printing" of genes thus ensuring the epigenetic memory process. Any imbalance in ratios of DNA methyltransferase (DNMT, gene writer), fat-mass obesity-associated protein (FTO, gene eraser) and product (function) homocysteine (Hcy) could lead to numerous diseases. Interestingly, a similar process also happens in stem cells during embryogenesis and development. Despite gigantic unsuccessful efforts undertaken thus far toward the conversion of a stem cell into a functional cardiomyocyte, there has been hardly any study that shows successful conversion of a stem cell into a multinucleated cardiomyocyte. We have shown nuclear hypertrophy during heart failure, however; the mechanism(s) of epigenetic memory, regulation of genes during fertilization, embryogenesis, development and during adulthood remain far from understanding. In addition, there may be a connection of aging, loosing of the memory leading to death, and presumably to reincarnation. This review highlights some of these pertinent issues facing the discipline of biology as a whole today.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Metilação de DNA , Histona Desacetilases/metabolismo , Histonas/metabolismo , Homocisteína/metabolismo , Células-Tronco/metabolismo , Acetilação , Epigênese Genética , Humanos
11.
Can J Physiol Pharmacol ; 99(1): 9-17, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32706987

RESUMO

Periodontal disease is one of the most common conditions resulting from poor oral hygiene and is characterized by a destructive process in the periodontium that essentially includes gingiva, alveolar mucosa, cementum, periodontal ligament, and alveolar bone. Notably, the destructive event in the alveolar bone has been linked to homocysteine (Hcy) metabolism; however, it has not been fully investigated. Therefore; the implication of Hcy towards initiation, progression, and maintenance of the periodontal disease remains incompletely understood. Higher levels of Hcy (also known as hyperhomocysteinemia (HHcy)) exerts deleterious effects on gum health and teeth in distinct ways. Firstly, increased production of proinflammatory cytokines such as TNF-α, IL-1ß, IL-6, and IL-8 leads to an inflammatory cascade of events that affect methionine (Met) and Hcy metabolism (i.e., 1-carbon metabolism) leading to HHcy. Secondly, metabolic dysregulation during chronic medical conditions increases systemic inflammation leading to a decrease in vitamins, more specifically B6, B12, and folic acid, that play important roles as cofactors in Hcy metabolism. Also, given the folate level in the HHcy state that is important during dysbiosis, these two conditions appear to be intimately related, and in this context, HHcy-induced dysbiosis may be one of the potential causes of periodontal disease. This paper sums up the link between periodontitis and HHcy, with a special emphasis on the "oral-gut microbiome axis" and the potential probiotic intervention towards warding off some of the serious periodontal disease conditions.


Assuntos
Disbiose/complicações , Microbioma Gastrointestinal/fisiologia , Homocisteína/metabolismo , Hiper-Homocisteinemia/imunologia , Periodontite/imunologia , Disbiose/sangue , Disbiose/imunologia , Disbiose/microbiologia , Ácido Fólico/sangue , Ácido Fólico/metabolismo , Homocisteína/sangue , Homocisteína/imunologia , Humanos , Hiper-Homocisteinemia/sangue , Hiper-Homocisteinemia/metabolismo , Metionina/metabolismo , Periodontite/sangue , Periodontite/metabolismo , Probióticos
12.
Front Immunol ; 11: 1730, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973741

RESUMO

Hidradenitis suppurativa (HS) is a chronic, inflammatory skin condition characterized by painful nodules which suppurate and later develop into scar tissues followed by the development of hypodermal tracts. Although the mechanisms behind HS are not fully understood, it is known that dietary factors play important roles in flare frequency and severity. We hypothesize that the high fat diet (HFD) causes dysbiosis, systemic inflammation, and hyperhomocysteinemia (HHcy) in susceptible individuals, which subsequently elevate inflammatory cytokines such as IL-1ß, IL-6, IL-17, and tumor necrosis factor alpha (TNF-α). This increase in dysbiosis-led inflammation coupled with a dysregulation of the 1-carbon metabolism results in an increase in matrix metalloproteinases MMP-2, MMP-8, and MMP-9 along with tissue matrix remodeling in the development and maintenance of the lesions and tracts. This manuscript weaves together the potential roles played by the gut microbiome, HHcy, MMPs, and the 1-carbon metabolism toward HS disease causation in susceptible individuals.


Assuntos
Bactérias/metabolismo , Dieta Hiperlipídica/efeitos adversos , Microbioma Gastrointestinal , Hidradenite Supurativa/etiologia , Homocisteína/sangue , Hiper-Homocisteinemia/complicações , Metaloproteinases da Matriz/metabolismo , Pele/enzimologia , Animais , Biomarcadores/sangue , Disbiose , Hidradenite Supurativa/enzimologia , Hidradenite Supurativa/microbiologia , Hidradenite Supurativa/patologia , Humanos , Hiper-Homocisteinemia/sangue , Medição de Risco , Fatores de Risco , Pele/patologia
13.
Front Physiol ; 11: 617953, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33708132

RESUMO

Although a high-fat diet (HFD) induces gut dysbiosis and cardiovascular system remodeling, the precise mechanism is unclear. We hypothesize that HFD instigates dysbiosis and cardiac muscle remodeling by inducing matrix metalloproteinases (MMPs), which leads to an increase in white adipose tissue, and treatment with lactobacillus (a ketone body donor from lactate; the substrate for the mitochondria) reverses dysbiosis-induced cardiac injury, in part, by increasing lipolysis (PGC-1α, and UCP1) and adipose tissue browning and decreasing lipogenesis. To test this hypothesis, we used wild type (WT) mice fed with HFD for 16 weeks with/without a probiotic (PB) in water. Cardiac injury was measured by CKMB activity which was found to be robust in HFD-fed mice. Interestingly, CKMB activity was normalized post PB treatment. Levels of free fatty acids (FFAs) and methylation were increased but butyrate was decreased in HFD mice, suggesting an epigenetically governed 1-carbon metabolism along with dysbiosis. Levels of PGC-1α and UCP1 were measured by Western blot analysis, and MMP activity was scored via zymography. Collagen histology was also performed. Contraction of the isolated myocytes was measured employing the ion-optic system, and functions of the heart were estimated by echocardiography. Our results suggest that mice on HFD gained weight and exhibited an increase in blood pressure. These effects were normalized by PB. Levels of fibrosis and MMP-2 activity were robust in HFD mice, and treatment with PB mitigated the fibrosis. Myocyte calcium-dependent contraction was disrupted by HFD, and treatment with PB could restore its function. We conclude that HFD induces dysbiosis, and treatment with PB creates eubiosis and browning of the adipose tissue.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA