Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(23)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34884505

RESUMO

Dilated cardiomyopathy (DCM) is the most common type of nonischemic cardiomyopathy characterized by left ventricular or biventricular dilation and impaired contraction leading to heart failure and even patients' death. Therefore, it is important to search for new cardiac tissue regenerating tools. Human mesenchymal stem/stromal cells (hmMSCs) were isolated from post-surgery healthy and DCM myocardial biopsies and their differentiation to the cardiomyogenic direction has been investigated in vitro. Dilated hmMSCs were slightly bigger in size, grew slower, but had almost the same levels of MSC-typical surface markers as healthy hmMSCs. Histone deacetylase (HDAC) activity in dilated hmMSCs was 1.5-fold higher than in healthy ones, which was suppressed by class I and II HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) showing activation of cardiomyogenic differentiation-related genes alpha-cardiac actin (ACTC1) and cardiac troponin T (TNNT2). Both types of hmMSCs cultivated on collagen I hydrogels with hyaluronic acid (HA) or 2-methacryloyloxyethyl phosphorylcholine (MPC) and exposed to SAHA significantly downregulated focal adhesion kinase (PTK2) and activated ACTC1 and TNNT2. Longitudinal cultivation of dilated hmMSC also upregulated alpha-cardiac actin. Thus, HDAC inhibitor SAHA, in combination with collagen I-based hydrogels, can tilt the dilated myocardium hmMSC toward cardiomyogenic direction in vitro with further possible therapeutic application in vivo.


Assuntos
Biomimética , Cardiomiopatia Dilatada/patologia , Diferenciação Celular , Células-Tronco Mesenquimais/patologia , Miócitos Cardíacos/citologia , Vorinostat/farmacologia , Idoso , Cardiomiopatia Dilatada/induzido quimicamente , Estudos de Casos e Controles , Proliferação de Células , Inibidores de Histona Desacetilases/farmacologia , Humanos , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Pessoa de Meia-Idade , Miócitos Cardíacos/efeitos dos fármacos , Regeneração
2.
ACS Appl Mater Interfaces ; 12(29): 32233-32246, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32438798

RESUMO

An efficient procedure for chemical initiator-free, in situ synthesis of a functional polyethylene glycol methacrylate (PEG MA) hydrogel on regular glass substrates is reported. It is demonstrated that self-initiated photografting and photopolymerization driven by UV irradiation can yield tens of nanometer-thick coatings of carboxy-functionalized PEG MA on the aldehyde-terminated borosilicate glass surface. The most efficient formulation for hydrogel synthesis contained methyl methacrylic acid (MAA), 2-hydroxyethyl methacrylate (HEMA), and PEG methacrylate (PEG10MA) monomers (1:1:1). The resulting HEMA/PEG10MA/MAA (HPMAA) coatings had a defined thickness in the range from 11 to 50 nm. The physicochemical properties of the synthesized HPMAA coatings were analyzed by combining water contact angle measurements, stylus profilometry, imaging null ellipsometry, and atomic force microscopy (AFM). The latter technique was employed in the quantitative imaging mode not only for direct probing of the surface topography but also for swelling behavior characterization in the pH range from 4.5 to 8.0. The estimated high swelling ratios of the HPMAA hydrogel (up to 3.2) together with its good stability and resistance to nonspecific protein binding were advantageous in extracellular matrix mimetics via patterning of fibronectin (FN) at a resolution close to 200 nm. It was shown that the fabricated FN micropatterns on HPMAA were equally suitable for single-cell arraying, as well as controlled cell culture lasting at least for 96 h.


Assuntos
Técnicas Biossensoriais , Materiais Revestidos Biocompatíveis/química , Hidrogéis/química , Metacrilatos/química , Polietilenoglicóis/química , Análise de Célula Única , Técnicas de Cultura de Células , Células Cultivadas , Materiais Revestidos Biocompatíveis/síntese química , Fibronectinas/química , Vidro/química , Humanos , Hidrogéis/síntese química , Concentração de Íons de Hidrogênio , Metacrilatos/síntese química , Microscopia de Fluorescência , Estrutura Molecular , Tamanho da Partícula , Processos Fotoquímicos , Polietilenoglicóis/síntese química , Propriedades de Superfície , Raios Ultravioleta
3.
Biomolecules ; 10(5)2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32408703

RESUMO

Hydrogel-supported neural cell cultures are more in vivo-relevant compared to monolayers formed on glass or plastic substrates. However, there is a lack of synthetic microenvironment available for obtaining standardized and easily reproducible cultures characterized by tissue-mimicking cell composition, cell-cell interactions, and functional networks. Synthetic peptides representing the biological properties of the extracellular matrix (ECM) proteins have been reported to promote the adhesion-driven differentiation and functional maturation of neural cells. Thus, such peptides can serve as building blocks for engineering a standardized, all-synthetic environment. In this study, we have compared the effect of two chemically crosslinked hydrogel compositions on primary cerebellar cells: collagen-like peptide (CLP), and CLP with an integrin-binding motif arginine-glycine-aspartate (CLP-RGD), both conjugated to polyethylene glycol molecular templates (PEG-CLP and PEG-CLP-RGD, respectively) and fabricated as self-supporting membranes. Both compositions promoted a spontaneous organization of primary cerebellar cells into tissue-like clusters with fast-rising Ca2+ signals in soma, reflecting action potential generation. Notably, neurons on PEG-CLP-RGD had more neurites and better synaptic efficiency compared to PEG-CLP. For comparison, poly-L-lysine-coated glass and plastic surfaces did not induce formation of such spontaneously active networks. Additionally, contrary to the hydrogel membranes, glass substrates functionalized with PEG-CLP and PEG-CLP-RGD did not sufficiently support cell attachment and, subsequently, did not promote functional cluster formation. These results indicate that not only chemical composition but also the hydrogel structure and viscoelasticity are essential for bioactive signaling. The synthetic strategy based on ECM-mimicking, multifunctional blocks in registry with chemical crosslinking for obtaining tissue-like mechanical properties is promising for the development of fast and well standardized functional in vitro neural models and new regenerative therapies.


Assuntos
Cerebelo/citologia , Colágeno/química , Hidrogéis/química , Oligopeptídeos/química , Organoides/citologia , Alicerces Teciduais/química , Animais , Astrócitos/fisiologia , Materiais Biomiméticos/química , Sinalização do Cálcio , Células Cultivadas , Reagentes de Ligações Cruzadas/química , Matriz Extracelular/química , Neurônios/fisiologia , Organoides/metabolismo , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA