Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Immunol ; 8: 858, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28798746

RESUMO

Manual analysis of flow cytometry data and subjective gate-border decisions taken by individuals continue to be a source of variation in the assessment of antigen-specific T cells when comparing data across laboratories, and also over time in individual labs. Therefore, strategies to provide automated analysis of major histocompatibility complex (MHC) multimer-binding T cells represent an attractive solution to decrease subjectivity and technical variation. The challenge of using an automated analysis approach is that MHC multimer-binding T cell populations are often rare and therefore difficult to detect. We used a highly heterogeneous dataset from a recent MHC multimer proficiency panel to assess if MHC multimer-binding CD8+ T cells could be analyzed with computational solutions currently available, and if such analyses would reduce the technical variation across different laboratories. We used three different methods, FLOw Clustering without K (FLOCK), Scalable Weighted Iterative Flow-clustering Technique (SWIFT), and ReFlow to analyze flow cytometry data files from 28 laboratories. Each laboratory screened for antigen-responsive T cell populations with frequency ranging from 0.01 to 1.5% of lymphocytes within samples from two donors. Experience from this analysis shows that all three programs can be used for the identification of high to intermediate frequency of MHC multimer-binding T cell populations, with results very similar to that of manual gating. For the less frequent populations (<0.1% of live, single lymphocytes), SWIFT outperformed the other tools. As used in this study, none of the algorithms offered a completely automated pipeline for identification of MHC multimer populations, as varying degrees of human interventions were needed to complete the analysis. In this study, we demonstrate the feasibility of using automated analysis pipelines for assessing and identifying even rare populations of antigen-responsive T cells and discuss the main properties, differences, and advantages of the different methods tested.

2.
Sci Rep ; 6: 20686, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26861911

RESUMO

Standardization of immunophenotyping requires careful attention to reagents, sample handling, instrument setup, and data analysis, and is essential for successful cross-study and cross-center comparison of data. Experts developed five standardized, eight-color panels for identification of major immune cell subsets in peripheral blood. These were produced as pre-configured, lyophilized, reagents in 96-well plates. We present the results of a coordinated analysis of samples across nine laboratories using these panels with standardized operating procedures (SOPs). Manual gating was performed by each site and by a central site. Automated gating algorithms were developed and tested by the FlowCAP consortium. Centralized manual gating can reduce cross-center variability, and we sought to determine whether automated methods could streamline and standardize the analysis. Within-site variability was low in all experiments, but cross-site variability was lower when central analysis was performed in comparison with site-specific analysis. It was also lower for clearly defined cell subsets than those based on dim markers and for rare populations. Automated gating was able to match the performance of central manual analysis for all tested panels, exhibiting little to no bias and comparable variability. Standardized staining, data collection, and automated gating can increase power, reduce variability, and streamline analysis for immunophenotyping.


Assuntos
Citometria de Fluxo/normas , Imunofenotipagem/normas , Laboratórios/normas , Algoritmos , Automação , Linfócitos B/citologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Citometria de Fluxo/métodos , Humanos , Imunofenotipagem/métodos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/metabolismo
3.
Cytometry A ; 89(1): 71-88, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26274018

RESUMO

Flow cytometry (FCM) is a fluorescence-based single-cell experimental technology that is routinely applied in biomedical research for identifying cellular biomarkers of normal physiological responses and abnormal disease states. While many computational methods have been developed that focus on identifying cell populations in individual FCM samples, very few have addressed how the identified cell populations can be matched across samples for comparative analysis. This article presents FlowMap-FR, a novel method for cell population mapping across FCM samples. FlowMap-FR is based on the Friedman-Rafsky nonparametric test statistic (FR statistic), which quantifies the equivalence of multivariate distributions. As applied to FCM data by FlowMap-FR, the FR statistic objectively quantifies the similarity between cell populations based on the shapes, sizes, and positions of fluorescence data distributions in the multidimensional feature space. To test and evaluate the performance of FlowMap-FR, we simulated the kinds of biological and technical sample variations that are commonly observed in FCM data. The results show that FlowMap-FR is able to effectively identify equivalent cell populations between samples under scenarios of proportion differences and modest position shifts. As a statistical test, FlowMap-FR can be used to determine whether the expression of a cellular marker is statistically different between two cell populations, suggesting candidates for new cellular phenotypes by providing an objective statistical measure. In addition, FlowMap-FR can indicate situations in which inappropriate splitting or merging of cell populations has occurred during gating procedures. We compared the FR statistic with the symmetric version of Kullback-Leibler divergence measure used in a previous population matching method with both simulated and real data. The FR statistic outperforms the symmetric version of KL-distance in distinguishing equivalent from nonequivalent cell populations. FlowMap-FR was also employed as a distance metric to match cell populations delineated by manual gating across 30 FCM samples from a benchmark FlowCAP data set. An F-measure of 0.88 was obtained, indicating high precision and recall of the FR-based population matching results. FlowMap-FR has been implemented as a standalone R/Bioconductor package so that it can be easily incorporated into current FCM data analytical workflows.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/análise , Antígenos CD4/análise , Biologia Computacional/métodos , Citometria de Fluxo/métodos , Antígenos Comuns de Leucócito/análise , Fosfoproteínas/análise , Proteína-Tirosina Quinase ZAP-70/análise , Algoritmos , Biomarcadores/análise , Interpretação Estatística de Dados , Humanos
4.
Cytometry A ; 89(1): 16-21, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26447924

RESUMO

The Flow Cytometry: Critical Assessment of Population Identification Methods (FlowCAP) challenges were established to compare the performance of computational methods for identifying cell populations in multidimensional flow cytometry data. Here we report the results of FlowCAP-IV where algorithms from seven different research groups predicted the time to progression to AIDS among a cohort of 384 HIV+ subjects, using antigen-stimulated peripheral blood mononuclear cell (PBMC) samples analyzed with a 14-color staining panel. Two approaches (FlowReMi.1 and flowDensity-flowType-RchyOptimyx) provided statistically significant predictive value in the blinded test set. Manual validation of submitted results indicated that unbiased analysis of single cell phenotypes could reveal unexpected cell types that correlated with outcomes of interest in high dimensional flow cytometry datasets.


Assuntos
Síndrome da Imunodeficiência Adquirida/patologia , Benchmarking , Biologia Computacional/métodos , Progressão da Doença , Citometria de Fluxo/métodos , Linfócitos T/citologia , Síndrome da Imunodeficiência Adquirida/diagnóstico , Algoritmos , Interpretação Estatística de Dados , Soropositividade para HIV , Humanos , Coloração e Rotulagem
5.
Assay Drug Dev Technol ; 8(2): 228-37, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20035617

RESUMO

Flow cytometry (FCM) is an important technology with a broad spectrum of applications ranging from basic research to clinical diagnostics. In a typical FCM experiment, thousands of cells are queried with respect to size, shape, and abundance of multiple cell surface antigens. Recent advances in FCM techniques and instrumentation have enabled researchers to raise the throughput of experimentation dramatically. However, data analysis has remained a time-consuming activity requiring significant manual intervention for gating as well as for overall data reduction and interpretation. Presented in this article is a novel, algorithmically flexible, internally developed, software framework for the analysis of plate-based FCM data for high-throughput screening (HTS). Utilizing a post-treatment pooling strategy, >87,000 individual wells representing over 240,000 compounds were automatically gated, percent of control (POC) calculated, results assembled, deconvolved, and sorted, allowing researchers to visually assess wells of interest in minutes.


Assuntos
Avaliação Pré-Clínica de Medicamentos/estatística & dados numéricos , Citometria de Fluxo/estatística & dados numéricos , Software , Algoritmos , Linhagem Celular Tumoral , Interpretação Estatística de Dados , Avaliação Pré-Clínica de Medicamentos/instrumentação , Avaliação Pré-Clínica de Medicamentos/métodos , Citometria de Fluxo/instrumentação , Citometria de Fluxo/métodos , Humanos , Bibliotecas de Moléculas Pequenas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA