Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biol Lett ; 19(2): 20220408, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36722144

RESUMO

Extreme weather events are among the most critical aspects of climate change, but our understanding of their impacts on biological populations remains limited. Here, we exploit the rare opportunity provided by the availability of concurrent longitudinal demographic data on two neighbouring marine top predator populations (the black-browed albatross, Thalassarche melanophris, breeding in two nearby colonies) hit by an exceptionally violent storm during one study year. The aim of this study is to quantify the demographic impacts of extreme events on albatrosses and test the hypothesis that extreme events would synchronously decrease survival rates of neighbouring populations. Using demographic modelling we found that, contrary to our expectation, the storm affected the survival of albatrosses from only one of the two colonies, more than doubling the annual mortality rate compared to the study average. Furthermore, the effects of storms on adult survival would lead to substantial population declines (up to 2% per year) under simulated scenarios of increased storm frequencies. We, therefore, conclude that extreme events can result in very different local-scale impacts on sympatric populations. Crucially, by driving demographic asynchrony, extreme events can hamper our understanding of the demographic responses of wild populations to mean, long-term shifts in climate.


Assuntos
Mudança Climática , Simpatria , Adulto , Humanos , Demografia
2.
J Exp Biol ; 225(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35234874

RESUMO

Despite their enormous size, whales make their living as voracious predators. To catch their much smaller, more maneuverable prey, they have developed several unique locomotor strategies that require high energetic input, high mechanical power output and a surprising degree of agility. To better understand how body size affects maneuverability at the largest scale, we used bio-logging data, aerial photogrammetry and a high-throughput approach to quantify the maneuvering performance of seven species of free-swimming baleen whale. We found that as body size increases, absolute maneuvering performance decreases: larger whales use lower accelerations and perform slower pitch-changes, rolls and turns than smaller species. We also found that baleen whales exhibit positive allometry of maneuvering performance: relative to their body size, larger whales use higher accelerations, and perform faster pitch-changes, rolls and certain types of turns than smaller species. However, not all maneuvers were impacted by body size in the same way, and we found that larger whales behaviorally adjust for their decreased agility by using turns that they can perform more effectively. The positive allometry of maneuvering performance suggests that large whales have compensated for their increased body size by evolving more effective control surfaces and by preferentially selecting maneuvers that play to their strengths.


Assuntos
Motivação , Baleias , Animais , Tamanho Corporal , Natação
3.
J Exp Biol ; 224(13)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34109418

RESUMO

High efficiency lunate-tail swimming with high-aspect-ratio lifting surfaces has evolved in many vertebrate lineages, from fish to cetaceans. Baleen whales (Mysticeti) are the largest swimming animals that exhibit this locomotor strategy, and present an ideal study system to examine how morphology and the kinematics of swimming scale to the largest body sizes. We used data from whale-borne inertial sensors coupled with morphometric measurements from aerial drones to calculate the hydrodynamic performance of oscillatory swimming in six baleen whale species ranging in body length from 5 to 25 m (fin whale, Balaenoptera physalus; Bryde's whale, Balaenoptera edeni; sei whale, Balaenoptera borealis; Antarctic minke whale, Balaenoptera bonaerensis; humpback whale, Megaptera novaeangliae; and blue whale, Balaenoptera musculus). We found that mass-specific thrust increased with both swimming speed and body size. Froude efficiency, defined as the ratio of useful power output to the rate of energy input ( Sloop, 1978), generally increased with swimming speed but decreased on average with increasing body size. This finding is contrary to previous results in smaller animals, where Froude efficiency increased with body size. Although our empirically parameterized estimates for swimming baleen whale drag were higher than those of a simple gliding model, oscillatory locomotion at this scale exhibits generally high Froude efficiency as in other adept swimmers. Our results quantify the fine-scale kinematics and estimate the hydrodynamics of routine and energetically expensive swimming modes at the largest scale.


Assuntos
Balaenoptera , Baleia Comum , Animais , Regiões Antárticas , Fenômenos Biomecânicos , Natação
4.
Mol Ecol ; 28(20): 4552-4572, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31541577

RESUMO

The Southern Ocean represents a continuous stretch of circumpolar marine habitat, but the potential physical and ecological drivers of evolutionary genetic differentiation across this vast ecosystem remain unclear. We tested for genetic structure across the full circumpolar range of the white-chinned petrel (Procellaria aequinoctialis) to unravel the potential drivers of population differentiation and test alternative population differentiation hypotheses. Following range-wide comprehensive sampling, we applied genomic (genotyping-by-sequencing or GBS; 60,709 loci) and standard mitochondrial-marker approaches (cytochrome b and first domain of control region) to quantify genetic diversity within and among island populations, test for isolation by distance, and quantify the number of genetic clusters using neutral and outlier (non-neutral) loci. Our results supported the multi-region hypothesis, with a range of analyses showing clear three-region genetic population structure, split by ocean basin, within two evolutionary units. The most significant differentiation between these regions confirmed previous work distinguishing New Zealand and nominate subspecies. Although there was little evidence of structure within the island groups of the Indian or Atlantic oceans, a small set of highly-discriminatory outlier loci could assign petrels to ocean basin and potentially to island group, though the latter needs further verification. Genomic data hold the key to revealing substantial regional genetic structure within wide-ranging circumpolar species previously assumed to be panmictic.


Assuntos
Migração Animal/fisiologia , Aves/genética , Especiação Genética , Variação Genética/genética , Animais , Oceano Atlântico , Aves/classificação , Mapeamento Cromossômico , Citocromos b/genética , DNA Mitocondrial/genética , Evolução Molecular , Genética Populacional , Genoma/genética , Genótipo , Nova Zelândia
5.
R Soc Open Sci ; 5(8): 171449, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30224976

RESUMO

Predator dietary studies often assume that diet is reflective of the diversity and relative abundance of their prey. This interpretation ignores species-specific behavioural adaptations in prey that could influence prey capture. Here, we develop and describe a scalable biologging protocol, using animal-borne camera loggers, to elucidate the factors influencing prey capture by a seabird, the gentoo penguin (Pygoscelis papua). From the video evidence, we show, to our knowledge for the first time, that aggressive behavioural defence mechanisms by prey can deter prey capture by a seabird. Furthermore, we provide evidence demonstrating that these birds, which were observed hunting solitarily, target prey when they are most discernible. Specifically, birds targeted prey primarily while ascending and when prey were not tightly clustered. In conclusion, we show that prey behaviour can significantly influence trophic coupling in marine systems because despite prey being present, it is not always targeted. Thus, these predator-prey relationships should be accounted for in studies using marine top predators as samplers of mid- to lower trophic-level species.

6.
Mol Ecol ; 26(18): 4831-4845, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28734075

RESUMO

Gelatinous zooplankton are a large component of the animal biomass in all marine environments, but are considered to be uncommon in the diet of most marine top predators. However, the diets of key predator groups like seabirds have conventionally been assessed from stomach content analyses, which cannot detect most gelatinous prey. As marine top predators are used to identify changes in the overall species composition of marine ecosystems, such biases in dietary assessment may impact our detection of important ecosystem regime shifts. We investigated albatross diet using DNA metabarcoding of scats to assess the prevalence of gelatinous zooplankton consumption by two albatross species, one of which is used as an indicator species for ecosystem monitoring. Black-browed and Campbell albatross scats were collected from eight breeding colonies covering the circumpolar range of these birds over two consecutive breeding seasons. Fish was the main dietary item at most sites; however, cnidarian DNA, primarily from scyphozoan jellyfish, was present in 42% of samples overall and up to 80% of samples at some sites. Jellyfish was detected during all breeding stages and consumed by adults and chicks. Trawl fishery catches of jellyfish near the Falkland Islands indicate a similar frequency of jellyfish occurrence in albatross diets in years of high and low jellyfish availability, suggesting jellyfish consumption may be selective rather than opportunistic. Warmer oceans and overfishing of finfish are predicted to favour jellyfish population increases, and we demonstrate here that dietary DNA metabarcoding enables measurements of the contribution of gelatinous zooplankton to the diet of marine predators.


Assuntos
Aves , Código de Barras de DNA Taxonômico , Cadeia Alimentar , Comportamento Predatório , Cifozoários/classificação , Animais , Ecossistema , Monitoramento Ambiental , Pesqueiros , Oceanos e Mares , Zooplâncton/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA