Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Angew Chem Int Ed Engl ; : e202414698, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39322620

RESUMO

Despite recent tremendous progress in the synthesis of nonplanar chiral aromatics, and helicenes in particular, their conversion to half-sandwich or sandwich transition metal complexes still lags behind, although they represent an attractive family of modular and underexplored chiral architectures with a potential catalytic use. In this work, starting from various chiral helicene-indene proligands, we prepared the enantio- and diastereopure oxa[6]- and oxa[7]helicene-indenido half-sandwich RhI and RhIII complexes and oxa[7]helicene-bisindenido ansa-metallocene FeII complex. To document their use, oxahelicene-indenido half-sandwich RhIII complexes were employed as chiral catalysts in enantioselective C-H arylation of benzo[h]quinolines with 1-diazonaphthoquinones to afford a series of axially chiral biaryls in mostly good to high yields and in up to 96 : 4 er. Thus, we developed stereocontrolled synthesis of chiral helicene-indenido ansa- and half-sandwich metal complexes, successfully demonstrated the first use of such helicene Cp-related metal complexes in enantioselective catalysis, and described an unusual sequence of efficient central-to-helical-to-planar-to-axial chirality transfer.

2.
Chemistry ; 30(32): e202304127, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38587984

RESUMO

We report on-surface synthesis of heterochiral 1D heptahelicene oligomers after deposition of a racemic heptahelicene monomer on an Au(111) surface followed by Ullmann coupling under ultrahigh vacuum conditions. Structure, chirality and mode of adsorption of the resulting dimers to octamers are inferred from the scanning probe microscopy and theoretical calculations.

3.
J Am Chem Soc ; 145(21): 11599-11610, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37129470

RESUMO

Helical bilayer nanographenes (HBNGs) are chiral π-extended aromatic compounds consisting of two π-π stacked hexabenzocoronenes (HBCs) joined by a helicene, thus resembling van der Waals layered 2D materials. Herein, we compare [9]HBNG, [10]HBNG, and [11]HBNG helical bilayers endowed with [9], [10], and [11]helicenes embedded in their structure, respectively. Interestingly, the helicene length defines the overlapping degree between the two HBCs (number of benzene rings involved in π-π interactions between the two layers), being 26, 14, and 10 benzene rings, respectively, according to the X-ray analysis. Unexpectedly, the electrochemical study shows that the lesser π-extended system [9]HBNG shows the strongest electron donor character, in part by interlayer exchange resonance, and more red-shifted values of emission. Furthermore, [9]HBNG also shows exceptional chiroptical properties with the biggest values of gabs and glum (3.6 × 10-2) when compared to [10]HBNG and [11]HBNG owing to the fine alignment in the configuration of [9]HBNG between its electric and magnetic dipole transition moments. Furthermore, spectroelectrochemical studies as well as the fluorescence spectroscopy support the aforementioned experimental findings, thus confirming the strong impact of the helicene length on the properties of this new family of bilayer nanographenes.

4.
Nanoscale ; 15(4): 1542-1553, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36383069

RESUMO

Fully aromatic helicenes are attractive building blocks for the construction of inherently chiral π-conjugated macrocyclic nanocarbons. These hitherto rare molecular architectures are envisaged to exhibit remarkable (chir)optical properties, self-assembly, charge/spin transport, induced ring current or a fascinating Möbius topology. Here the synthesis of helically chiral macrocycles that combine angular dibenzo[5]helicene units as corners and linear trans-stilbene-4,4'-diyl linkers as edges is reported. By subjecting a racemic or enantiopure divinyl derivative of dibenzo[5]helicene to olefin metathesis, which was catalysed by a 2nd generation Piers catalyst under kinetic control, a π-conjugated helicene cyclic trimer (33%) and a tetramer (22%) were obtained, which were separated by GPC. Combining racemic/asymmetric synthesis with the resolution of enantiomers/diastereomers by SFC/HPLC on a chiral column, both homochiral (+)-(M,M,M)/(-)-(P,P,P) and heterochiral (+)-(M,M,P)/(-)-(M,P,P) stereoisomers of the helicene cyclic trimer could be obtained in an enantio- and diastereomerically enriched form. The complete energy profile of their interconversion was compiled on the basis of kinetic measurements and numerical solution of the proposed kinetic model. In equilibrium, the heterochiral diastereomer predominates over the homochiral one (ca. 75 : 25 at 76 °C). π-Conjugation along a large, twisted circuit in the helicene cyclic trimer is rather disrupted, stabilising this formally antiaromatic molecule. Using an optimised PeakForce mode of ambient AFM, the self-assembly of otherwise highly mobile stereoisomers of the helicene cyclic trimer on the HOPG surface could be studied. Irrespective of the stereochemistry, strong preferences for the edge-to-edge interaction of these macrocycles were found to form very long parallel 1D molecular stripes in ordered 2D nanocrystals, a result also supported by molecular dynamics simulations. Six trityl groups, initially introduced to the macrocycle to enhance solubility, serve as a key "molecular Velcro" system in the self-assembly of macrocycles to maximise their mutual van der Waals interactions.

5.
Molecules ; 27(21)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36364465

RESUMO

The synthesis of a tetrathiafulvalene (TTF) derivative, S-[4-({4-[(2,2'-bi-1,3-dithiol-4-ylmethoxy)methyl] phenyl}ethynyl)phenyl] ethanethioate, suitable for the modification of gold nanoparticles (AuNPs), is described in this article. The TTF ligand was self-assembled on the AuNP surface through ligand exchange, starting from dodecanethiol-stabilized AuNPs. The resulting modified AuNPs were characterized by TEM, UV-Vis spectroscopy, and electrochemistry. The most suitable electrochemical method was the phase-sensitive AC voltammetry at very low frequencies of the sine-wave perturbation. The results indicate a diminishing electronic communication between the two equivalent redox centers of TTF and also intermolecular donor-acceptor interactions manifested by an additional oxidation wave upon attachment of the ligand to AuNPs.


Assuntos
Ouro , Nanopartículas Metálicas , Ouro/química , Eletroquímica/métodos , Ligantes , Nanopartículas Metálicas/química
6.
Chem Commun (Camb) ; 58(91): 12732-12735, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36314481

RESUMO

A series of regioisomeric push-pull amino-nitro [6]helicenes and a related [7]helicene derivative were prepared and their racemates resolved into enantiomers. Compared to the parent helicenes, they exhibit red-shifted UV-Vis spectra, pronounced dipole moments, altered chiroptical properties such as remarkable optical rotatory power, and can form nanocrystalline Langmuir-Blodgett films.


Assuntos
Compostos Policíclicos , Estereoisomerismo
7.
Electrophoresis ; 43(5-6): 696-707, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34933403

RESUMO

Nonaqueous capillary electrophoresis (NACE) using methanol (MeOH) as a solvent of the BGEs and quantum mechanical density functional theory (DFT) have been applied to determine the thermodynamic acidity (ionization) constants (pKa ) of mono- and diaza[5]helicenes, mono- and diaza[6]helicenes, and their dibenzo derivatives in MeOH and water. First, the mixed acidity constants, pKa,MeOHmix${\rm{p}}K_{{\rm{a,MeOH}}}^{{\rm{mix}}}$ , of ionogenic pyridinium groups of azahelicenes and their derivatives in MeOH were obtained by nonlinear regression analysis of pH dependence of their effective electrophoretic mobilities. The effective mobilities were measured by NACE in a large series of methanolic BGEs within a wide conventional pH range (pHMeOH 1.6-12.0) and at ambient temperature (21-26°C) in a home-made CE device. Prior to mixed acidity constant calculation, the effective mobilities were corrected to reference temperature (25°C) and constant ionic strength (25 mM). Then, the mixed acidity constants were recalculated to the thermodynamic acidity constants pKa,MeOH by the Debye-Hückel theory of nonideality of electrolyte solutions. Finally, from the methanolic thermodynamic pKa,MeOH values, the aqueous thermodynamic pKa,H2O${\rm{p}}{K_{{\rm{a,}}{{\rm{H}}_{\rm{2}}}{\rm{O}}}}$ constants were estimated using the empirical relations between methanolic and aqueous acidity constants derived for structurally related pyridine derivatives. Depending on the number and position of the nitrogen atoms in their molecules, the analyzed azahelicenes were found to be weak to moderate bases with methanolic pKa,MeOH in the range 2.01-8.75 and with aqueous pKa,H2O${\rm{p}}{K_{{\rm{a,}}{{\rm{H}}_{\rm{2}}}{\rm{O}}}}$ in the range 1.67-8.28. The thermodynamic pKa,MeOH obtained by the DFT calculations were in a good agreement with those determined experimentally by NACE.


Assuntos
Ácidos , Eletroforese Capilar , Eletroforese Capilar/métodos , Concentração de Íons de Hidrogênio , Metanol , Concentração Osmolar , Termodinâmica
8.
Nat Commun ; 11(1): 1337, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-32165626

RESUMO

Intramolecular charge transfer processes play an important role in many biological, chemical and physical processes including photosynthesis, redox chemical reactions and electron transfer in molecular electronics. These charge transfer processes are frequently influenced by the dynamics of their molecular or atomic environments, and they are accompanied with energy dissipation into this environment. The detailed understanding of such processes is fundamental for their control and possible exploitation in future technological applications. Most of the experimental studies of the intramolecular charge transfer processes so far have been carried out using time-resolved optical spectroscopies on large molecular ensembles. This hampers detailed understanding of the charge transfer on the single molecular level. Here we build upon the recent progress in scanning probe microscopy, and demonstrate the control of mixed valence state. We report observation of single electron transfer between two ferrocene redox centers within a single molecule and the detection of energy dissipation associated with the single electron transfer.

9.
Acc Chem Res ; 53(1): 144-158, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31833763

RESUMO

Advanced molecular nanocarbons are now in the spotlight reflecting the basic discoveries of fullerenes, carbon nanotubes, and graphene. This research area includes also the chemistry, physics, and nanoscience of nonplanar polycyclic hydrocarbons, many of which exhibit helical chirality, such as iconic helicenes and their congeners. The combination of unique π-electron systems with the chirality phenomenon makes them highly attractive in various fields of science. Helicenes are polyaromatic compounds that are composed of all-angularly annulated benzene units, but other (hetero)cycles can also be embedded into their backbone. Even though they do not contain any stereogenic center, they are inherently chiral owing to the helical shape they adopt. Hexahelicene and higher homologues are conformationally stable within a reasonable range of temperatures and, therefore, can be obtained in an enantiopure form through a racemate resolution or asymmetric synthesis. An amazing array of synthetic methods for their preparation has been developed, but only a few of them have passed the tough scrutiny to be general, robust and practical methods such as traditional photocyclodehydrogenation of diaryl olefins and recently developed transition-metal-catalyzed [2 + 2 + 2] cycloisomerization of π-electron systems, which is discussed in this Account. Alkyne [2 + 2 + 2] cycloisomerization is a highly exergonic process and is therefore suitable for forming the strained helicene backbone, three (or more) cycles of which are closed in a single operation. The typical starting materials are aromatic triynes (optionally cyanodiynes or ynedinitriles) or tetraynes with diynes that undergo intramolecular or intermolecular cyclization, respectively, catalyzed by various complexes mainly of Ni0, CoI, or RhI. Utilizing this synthetic methodology, various [5]-, [6]-, [7]-, [9]-, [11]-, [13]-, [16]-, [17]-, and [19]helicenes or their congeners, including functionalized derivatives, can be effectively prepared. Moreover, asymmetric synthesis (both catalytic and stoichiometric) of nonracemic helicenes has already been demonstrated. It relies on [2 + 2 + 2] cycloisomerization of centrally chiral triynes followed by an asymmetric transformation of the first order (controlled by the 1,3-allylic-type strain) or on enantioselective [2 + 2 + 2] cycloisomerization of alkynes catalyzed by chiral complexes mainly of Ni0 or RhI. Intriguingly, advanced helical architectures were formed such as the longest helicenes (up to oxa[19]helicene by closing 12 rings in a single synthetic operation) or laterally extended helicenes (e.g., pyreno[7]helicenes). Utilizing the aforementioned synthetic methodology, the tailor-made helical molecular nanocarbons are now better accessible to be applied in enantioselective catalysis, chirality sensing, spintronics (based on chirality induced spin selectivity), chiroptics (to produce circularly polarized light emission), organic/molecular electronics, or chiral single molecule devices.

10.
J Org Chem ; 85(1): 248-276, 2020 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-31808692

RESUMO

A series of carba- or oxa[5]-, [6]-, [7]-, and -[19]helicene (di)thiols was prepared. The Miyazaki-Newman-Kwart rearrangement of (dimethylcarbamothioyl)oxy (oxa)helicenes in a flow reactor or nucleophilic substitution of dichloro (oxa)helicenes with alkanethiolates were used in the sulfanylation step. Despite the high temperatures employed in this key step, no conformational scrambling was observed during the asymmetric synthesis of the diastereo- and enantiopure oxahelicenes. Single-molecule conductivity of the longest oxa[19]helicene dithiol derivative was studied by the scanning tunneling microscopy break-junction method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA